• Title/Summary/Keyword: Deformations

Search Result 1,615, Processing Time 0.029 seconds

AN EFFECT OF LARGE DEFORMATIONS ON WAVES IN ELASTIC CYLINDRICAL LAYER

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.811-818
    • /
    • 1998
  • A cylindrical elastic layer in finite deformation s con-sidered. The characteristics of the linear longitudinal wave and the nonlinear shear wave are investigated; the dependence of the later on the parameter of large deformation is given.

Development of Thermal Distortion Analysis Method Based on Inherent Strain for TMCP Steels (TMCP 강판의 고유변형도 기반 열변형 해석법 개발)

  • Ha, Yun-Sok;Yang, Jin-Hyuk;Won, Seok-Hee;Yi, Myung-Su
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.61-66
    • /
    • 2008
  • As ships become to be larger than ever, the thicker plate and the higher tensile steel plate are used in naval shipyard. Though special chemical composition is needed for high-tensile steels, recent high-tensile steels are made by the TMCP(Thermo-Mechanical control process) skill. The increase of yield stress and tensile stress of TMCP steels is induced from bainite phase which is transformed from austenite, but that increased yield stress can be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should reflect principle of TMCP steels. This study developed an algorithm which can calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the predicting of the portion of initial bainite is considered when calculating inherent strain. The simulations of plate deformation by these values showed good agreements with experimental results of normalizing steels and TMCP steels in welding and heating. Finally we made an inherent strain database of steels used in Class rule.

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

Lateral Displacement and Ground Rising Movement with Soil Embankment (성토에 따른 지반의 측방변위와 지표면 융기량)

  • Jeong, Ji-Cheol;Shin, Bang-Woong;Oh, Se-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2004
  • During and after the construction of embankment on soft ground, consolidation settlements and lateral displacements develop. But generally it's very difficult to predict the magnitude of lateral deformations and the correct distribution of lateral displacements with depth under the toe of embankment because the consolidation and the shear deformations of soft ground occur simultaneously. This study shows that later displacements of ground surface arise by embankment loading act on soft clay hight water contents in laboratory model testing. The results of model test are observed settlement of embankment, amount of maximum rising and displacement of ground surface with loading velocity. The formula were proposed to predict lateral movement by test series.

  • PDF

Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion

  • Abegaz, Ruth A.;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.59-77
    • /
    • 2020
  • The code static eccentricity model for elastic torsional design of structures has two critical shortcomings: (1) the negation of the inertial torsional moment at the center of mass (CM), particularly for torsionally-unbalanced (TU) building structures, and (2) the confusion caused by the discrepancy in the definition of the design eccentricity in codes and the resistance eccentricity commonly used by engineers such as in FEMA454. To overcome these shortcomings, using the resistance eccentricity model that can accommodate the inertial torsional moment at the CM, interactive relations between shear and torsion are proposed as follows: (1) elastic responses of structures at instants of peak edge-frame drifts are given as functions of resistance eccentricity, and (2) elastic hysteretic relationships between shear and torsion in forces and deformations are bounded by ellipsoids constructed using two adjacent dominant modes. Comparison of demands estimated using these two interactive relations with those from shake-table tests of two TU building structures (a 1:5-scale five-story reinforced concrete (RC) building model and a 1:12-scale 17-story RC building model) under the service level earthquake (SLE) show that these relations match experimental results of models reasonably well. Concepts proposed in this study enable engineers to not only visualize the overall picture of torsional behavior including the relationship between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of structures such as the maximum edge-frame drifts and the corresponding shear force and torsion moment with the eccentricity.