• Title/Summary/Keyword: Deformation of Anchorage

Search Result 46, Processing Time 0.022 seconds

Development of a novel self-centering buckling-restrained brace with BFRP composite tendons

  • Zhou, Z.;He, X.T.;Wu, J.;Wang, C.L.;Meng, S.P.
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.491-506
    • /
    • 2014
  • Buckling-restrained braces (BRBs) have excellent hysteretic behavior while buckling-restrained braced frames (BRBFs) are susceptible to residual lateral deformations. To address this drawback, a novel self-centering (SC) BRB with Basalt fiber reinforced polymer (BFRP) composite tendons is presented in this work. The configuration and mechanics of proposed BFRP-SC-BRBs are first discussed. Then an 1840-mm-long BFRP-SC-BRB specimen is fabricated and tested to verify its hysteric and self-centering performance. The tested specimen has an expected flag-shaped hysteresis character, showing a distinct self-centering tendency. During the test, the residual deformation of the specimen is only about 0.6 mm. The gap between anchorage plates and welding ends of bracing tubes performs as expected with the maximum opening value 6 mm when brace is in compression. The OpenSEES software is employed to conduct numerical analysis. Experiment results are used to validate the modeling methodology. Then the proposed numerical model is used to evaluate the influence of initial prestress, tendon diameter and core plate thickness on the performance of BFRP-SC-BRBs. Results show that both the increase of initial prestress and tendon diameters can obviously improve the self-centering effect of BFRP-SC-BRBs. With the increase of core plate thickness, the energy dissipation is improved while the residual deformation is generated when the core plate strength exceeds initial prestress force.

Nonlinear Analysis of RC Beams Considering Fixed-End Rotation due to Bond-Slip (부착슬립에 의한 강체변형을 고려한 철근콘크리트 보의 비선형해석)

  • Kim, Sun-Pil;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • An analytical procedure to analyze reinforced concrete (RC) beams subject to monotonic loadings is proposed on the basis of the moment-curvature relations of RC sections. Unlike previous analytical models which result the overestimation of stiffnesses and underestimation of structural deformations induced from ignoring the shear deformation and assuming perfect-bond condition between steel and concrete, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end. The advantages of the proposed relation, compared with the previous numerical models, are on the promotion in effectiveness of analysis and reflection of influencing factors which must be considered in nonlinear analysis of RC beam by taking into account the nonlinear effects into the simplifying moment-curvature relation. Finally, correlation studies between analytical and experimental results are conducted to establish the applicability of the proposed model to the nonlinear analysis of RC structures.

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

Estimation of Geometric Error Sources of Suspension Bridge using Survey Data (측량 데이터를 이용한 현수교의 형상오차 원인 추정)

  • Park, Yong Myung;Cho, Hyun Jun;Cheung, Jin Hwan;Kim, Nam Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.313-321
    • /
    • 2007
  • The study discussed in this paper presents a method of estimating sources of geometric errors in suspension bridges in use, based on geometric survey data. A geometric error is defined as the difference between the survey data and the design geometry of a main cable. It is assumed that the geometric error in a suspension bridge is caused by the variations in the weight of the stiffening girder and the deformation of the anchorage foundations due to the creep of soil. The variations in the girder weight and the deformation of the foundation were estimated by constructing a matrix of factors that affect suspension bridges due to the variations. To check the validity of the proposed method, it was applied to the Kwang-An Bridge, and the sources of geometric errors in the bridge were estimated using the survey data.

A Study on the Structural Strength Evaluation for the Development of One-ton Grade Commercial Vehicle Seat Frame for the FMVSS 201 Model (1톤급 상용차 시트 개발에 따른 FMVSS 210 Model 구조 강도 평가 연구)

  • Cho, Kyu-Chun;Ha, Man-Ho;Moon, Hong-ju;Kim, Young-Gon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.130-136
    • /
    • 2018
  • This study develops a seat with electric motor technology for a one-ton grade commercial vehicle. While applying electric motor technology, the FMVSS 210 seat frame strength test is also conducted to examine the product's weak parts. The seat frame strength test used the FMVSS 210 test standard and the ANSYS program was used to simulate the test and identify weak parts in the deformation and strain values. The test results showed that the cushion frame and slide rail connection bracket were fractured at loads of about 10,000 N. Similarly, the maximum stress and strain values in the bracket were obtained in the simulation results. On this basis, it was evaluated that the connection part bracket was a considerably weak part in the case of the first model, and changing the shape of the bracket and reinforcing the strength were required. In addition, the seat belt anchorage test results and simulation results were compared to assure their validity. In the comparison results, the error for each is about 5-10%. Therefore, the simulation performed in this study is considered to have produced reasonably accurate results.

3-dimensional finite element analysis of maxillary molar distalization using R-jig with TADs (TADs와 R-jig를 이용한 상악 구치 원심 이동에 관한 3차원 유한요소 분석)

  • Tark, Myung-Hyun;Lee, Keunyoung;Cho, Jin-Woo;Chee, Young-Deok;Cho, Jin-Hyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.4
    • /
    • pp.265-277
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the differences of displacement pattern depending on type of sliding jig and application method during maxillary molar distalization with temporary anchorage devices (TADs). Materials and Methods: Maxilla with normal tooth size and arch shape was selected to create a 3-dimensional finite element model, which included the bracket, orthodontic main archwire, removable sliding jig (R-jig). The orthodontic mini-implant anchorage was set 8 mm superiorly from main archwire, buccally between the second premolar and first molar. The base experimental design was Condition 1, which was composed $0.019{\times}0.025$ inch stainless steel (SS) of wire size of R-jig, 200 gm force, un-tied state. And the other designs varied to wire size of R-jig, magnitude of force. The results are as follows. Results: As the wire size of R-jig was increased, the deformation of R-jig was decreased. However, the displacement of second molar wasn't different each other. As the force to second molar was increased, the more displacement of second molar was observed, and the more distal tipping movement, vetical displacement was observed. Conclusion: R-jig can get distal teeth movement in orthodontic treatment without side effects.

Effects of Tie Details on Seismic Performance of RC Columns Subjected to Low Compression Loads (낮은 압축력을 받는 철근콘크리트 기둥의 내진성능에 대한 띠철근 상세의 영향)

  • Kim, Chul Goo;Park, Hong Gun;Eom, Tae Sung;Kim, Tae Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.195-205
    • /
    • 2015
  • Various non-seismic tie details are frequently used for one- and two-story small buildings because the seismic demand on their deformation capacities is not relatively significant. To evaluate the effects of the non-seismic tie details on the seismic performance of reinforced concrete columns, six square columns with a cross section of $400{\times}400mm$ and six rectangular columns with a cross section of $250{\times}640mm$ were tested. The anchorage details at both ends and spacing of tie hoops, along with the cross-sectional shape and the magnitude of axial load, were considered as the primary test parameters. Test results showed that square columns had higher stiffness and lower lateral deformation rather than rectangular columns. Both lap spliced tie and U-shaped tie provided comparable or improved seismic performance to $90^{\circ}$ hook tie in terms of maximum strength, ductility, and energy dissipation. The predicted curves with modeling parameters in ASCE41-13 were conservative for test results of lap spliced tie and U-shaped tie specimens since plastic behavior after flexural yielding could not be considered. For economical design, ASCE41-13 should be revised with various test results of tie details.

Strengthening of perforated walls in cable-stayed bridge pylons with double cable planes

  • Cheng, Bin;Wu, Jie;Wang, Jianlei
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.811-831
    • /
    • 2015
  • This paper focuses on the strengthening methods used for improving the compression behaviors of perforated box-section walls as provided in the anchorage zones of steel pylons. Rectangular plates containing double-row continuous elliptical holes are investigated by employing the boundary condition of simple supporting on four edges in the out-of-plane direction of plate. Two types of strengthening stiffeners, named flat stiffener (FS) and longitudinal stiffener (LS), are considered. Uniaxial compression tests are first conducted for 18 specimens, of which 5 are unstrengthened plates and 13 are strengthened plates. The mechanical behaviors such as stress concentration, out-of-plane deformation, failure pattern, and elasto-plastic ultimate strength are experimentally investigated. Finite element (FE) models are also developed to predict the ultimate strengths of plates with various dimensions. The results of FE analysis are validated by test data. The influences of non-dimensional parameters including plate aspect ratio, hole spacing, hole width, stiffener slenderness ratio, as well as stiffener thickness on the ultimate strengths are illustrated on the basis of numerous parametric studies. Comparison of strengthening efficiency shows that the continuous longitudinal stiffener is the best strengthening method for such perforated plates. The simplified formulas used for estimating the compression strengths of strengthened plates are finally proposed.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.