• 제목/요약/키워드: Deformation mechanisms

검색결과 255건 처리시간 0.026초

개별요소법에 의한 사면 안정성 연구(토플링 파괴 메카니즘에 응용) (Analysis of Slope Stability by the Distinct Element Method(Application to the Toppling Mechanisms))

  • 한공창
    • 터널과지하공간
    • /
    • 제3권1호
    • /
    • pp.96-107
    • /
    • 1993
  • This paper deals with the analysis of rock slope stability using the distinct element method. This method consists in analysis of the interaction of discrete block assemblage delimited by elementary joints, which permits to consider the heterogeneous, anisotropic and discontinuous features of the rock mass. In particular, we were able to show that this method, and especially the BRIG3D software, is an outstanding tool which gives informations of greatest interest in order to analyze the toppling mechanisms. We have confirmed the fundamental role of the rock mass structure with different simulations. In the case of toppling phenomena, the essential parameter is the dip of major discontinuities. It has an influence on the intensity and volume of deformations. The anisotropic and heterogeneous features of the rock mass play also an important role. It is proved by insertion of thick rock bars in the structure or varying rock block sizes in the mass. These models modified considerably the stress distribution and the deformation distribution. Finally, we have analyzed the influence of mechanical parameters such as friction angle and tangential stiffness.

  • PDF

GF/PP 복합재료의 충격파괴거동에 대한 온도효과 (Temperature Effect on Impact Fracture Behavior of GF/PP Composites)

  • 고성위;엄윤성
    • 수산해양기술연구
    • /
    • 제41권1호
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

Parameter Investigation for Powder Compaction using Discrete-Finite Element Analysis

  • Choi, Jinnil
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.337-343
    • /
    • 2015
  • Powder compaction is a continually and rapidly evolving technology where it is a highly developed method of manufacturing reliable components. To understand existing mechanisms for compaction, parameter investigation is required. Experimental investigations on powder compaction process, followed by numerical modeling of compaction are presented in this paper. The experimental work explores compression characteristics of soft and hard ductile powder materials. In order to account for deformation, fracture and movement of the particles, a discrete-finite element analysis model is defined to reflect the experimental data and to enable investigations on mechanisms present at the particle level. Effects of important simulation factors and process parameters, such as particle count, time step, particle discretization, and particle size on the powder compaction procedure have been explored.

Failure mechanisms of a rigid-perfectly plastic cantilever with elastic deformation at its root subjected to tip pulse loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • 제2권2호
    • /
    • pp.141-156
    • /
    • 1994
  • In this paper, the effect of material elasticity was evaluated through a simple model as proposed by Wang and Yu (1991), for yield mechanisms of a cantilever beam under tip pulse loading. The beam was assumed rigid-perfectly plastic but instead of the usual fully clamped constraints at its root, an elastic-perfectly plastic rotational spring was introduced there so the system had a certain capacity to absorb elastic energy. Compared with a rigid-perfectly plastic beam without a spring root, the present beam-spring model showed differences in the initial plastic hinge position and the minimum magnitude of the dynamic force needed to produce a plastic failure. It was also shown that various failure responses may happen while the hinge travels along the beam segment towards the root, rather than a unique response mode as in a rigid perfectly plastic analysis.

Powder Metallurgical Tool Steel Solutions for Powder Pressing and Other High-performance Cold Work Applications

  • Schemmel, Ingrid;Marsoner, Stefan;Makovec, Heinz
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.841-843
    • /
    • 2006
  • In high-performance cold work applications, tool failure depends on the predominating loading conditions. Typical failure mechanisms are a combination of abrasive wear, adhesive wear, plastic deformation, cracking and edge crumbling. In this paper we demonstrate how the microstructure of tool steels can be positively influenced by modifying the alloying system and the production route to meet the demands of the different loading situations which occur during operation. The investigation was focused on ductility, fatigue strength and wear resistance. Theoretical considerations were confirmed by practical tests.

  • PDF

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Bond Analysis of Ribbed Reinforcing Bars

  • Park, Oan-Chul
    • KCI Concrete Journal
    • /
    • 제13권2호
    • /
    • pp.19-25
    • /
    • 2001
  • A simple expression to predict bond strength of reinforcing bars with rib deformation to the surrounding is derived for the case of splitting bond failure. Finite element analysis is used to model the confining behavior of concrete cover. The roles of the interfacial properties, specifically, the friction coefficient, cohesion, the relative rib area and the rib face angle are examined. Values of bond strength obtained using the analytical model are in good agreement with the bond test results from the previous studies. The analytical model provides insight into interfacial bond mechanisms and the effects of the key variables on the bond strength of deformed bars to concrete. Based on the comparison between the analytical results and the test results, the values of cohesion, coefficient of friction, and the effective rib face angle are proposed.

  • PDF

Dynamic response of a hinged-free beam subjected to impact at an arbitrary location along its span with shear effect

  • Zhang, Y.;Yang, J.L.
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.483-498
    • /
    • 2007
  • In case of considering the shear effect, the complete solutions are obtained for dynamic plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is hinged and the other end free, subjected to a transverse strike by a travelling rigid mass at an arbitrary location along its span. Special attention is paid to new deformation mechanisms due to shear sliding on both sides of the rigid mass and the plastic energy dissipation. The dimensionless numerical results demonstrate that three parameters, i.e., mass ratio, impact position of mass, as well as the non-dimensional fully plastic shear force, have significant influence on the partitioning of dissipated energy and failure mode of the hingedfree beam. The shear effect can never be negligible when the mass ratio is comparatively small and the impact location of mass is close to the hinged end.

Smeared와 Discrete 균열에 의한 암염의 유한요소해석 (Finite Element Analysis of Combined Smeared and Discrete Mechanisms for Rock Salt)

  • 윤일로;허광희;황충열
    • 전산구조공학
    • /
    • 제8권4호
    • /
    • pp.107-115
    • /
    • 1995
  • 지하 방사성 폐기물 저장소의 오랜기간동안의 거동은 지반의 파괴와 변형에 영향과 암염의 비선형변형의 예측은 어려운 실정이다. 따라서 본 연구는 암염의 비선형파괴 메커니즘과 비선형 연속체거동의 유한요소모델을 개발하였다.

  • PDF

열간압연에 의한 스테인레스 클래드강 제조 (Fabrication of stainless clad steel by hot rolling)

  • 김승태;권숙인
    • Journal of Welding and Joining
    • /
    • 제8권2호
    • /
    • pp.70-79
    • /
    • 1990
  • Stainless clad steels were made through hot rolling process. Backing plates employed in this study were HSLA steel and mild steel. The shear bond strength increased with an increase of the soaking temperature and time. It was also found that the shear bond strength increased with an increase of the reduction ratio. The threshold deformation was observed to be 20% and 10% respectively when the soaking conditions of 15 min. at 900.deg. C and 30 min. at 1000.deg. C were applied. Either the rolling or the transverse direction did not give any significant difference in the shear bond strength. Stainless steel-HSLA steel was superior to stainless steel-mild steel in the same range of magnitude. Because the above experimental results were in contrary to the existing mechanisms, the new model was proposed to describe the bonding mechanism and the void formation.

  • PDF