• Title/Summary/Keyword: Deformation mechanisms

Search Result 255, Processing Time 0.034 seconds

Wear and Friction characteristics of $Cr_2$$O_2$ coating included $SiO_2$ and $TiO_2$ ($SiO_2$$TiO_2$가 첨가된 $Cr_2$$O_3$용사코팅의 마찰 .마멸 특성)

  • 서보현;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.69-77
    • /
    • 2001
  • Wear and Friction characteristics of plasma-sprayed Cr$_2$O$_3$ coating and Cr$_2$O$_3$ coating included SiO$_2$ and TiO$_2$ against SiC ball have been investigated under different loads. Worn surfaces were observed by SEM and worn surfaces were analyzed by EDS. The Friction coefficient and the Wear resistance of Cr$_2$O$_3$-5SiO$_2$-3TiO$_2$coating was less than that of Cr$_2$O$_3$ coating. The main mechanisms were plastic deformation and brittle fracture. The film on surface were made by plastic deformation and compacted wear debris. This film protect wear of coating

  • PDF

Theoretical Considerations on Effect of Environments on Strain Hardening

  • Lee, Byoung-Whie
    • Nuclear Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.21-31
    • /
    • 1971
  • The part of the work of plastic deformation of metal goes into the changes in the total surface free energy. This contribution is dependent on the specific surface free energy, which is affected by the environment. Based on thermodynamical approach, volume constancy requirement and adsorption induced two distinct dislocation interaction mechanisms for strengthening or weakening of metals at surface, theoretical derivation has been made to show that the environmental contribution on the strain hardening, the stress and the energy required for plastic deformation can be expressed in terms of solid surface tension in vacuum (${\gamma}$$_{s}$), interfacial tension (${\gamma}$$_{se}$ ), surface dislocation density ($\rho$$_{s}$), internal dislocation density ($\rho$$_{i}$) and fraction of surface site uncoverage (f). On the basis of theoretical derivation, the various mechanical behaviours under different environments are predicted.d.d.

  • PDF

An Effective Compensation Method of Press Tool Geometry for Stamping a Ultra High Strength Steel Center-pillar after Heat Treatment (표면처리 후 초고강도강 센터필러 프레스 금형의 효율적 보정기법)

  • Lee, T.G.;Kwak, J.H.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.439-445
    • /
    • 2014
  • Changes in the accuracy of the geometrical shape after a surface treatment are often very large due to the variation of the deformation mechanisms such as edge draw-in and the variation in springback caused by the reduction in the coefficient of friction between the tool and the blank. In the present study, the resulting shape accuracy due to the changes in deformation is quantitatively examined in order to predict the variation and to remove any undesirable additional tool compensation for the center pillar member made from steel with a UTS of 980MPa. The study examines important process parameters that are closely related with the edge draw-in such as the blank holding force, the contact status between the tool and the blank and the friction coefficient. The proposed method is applied within the finite element analysis of the stamping process for tools after a surface treatment and the amount of edge draw-in and flush values are compared between the analysis and experiments. The results demonstrate that the proposed quantification and finite element scheme are applicable to complicated tool compensation procedures and compensation can be designed effectively.

Numerical Analysis of Fracture Behavior in Aged RC Structures (보강된 노후 구조물 파괴거동 예측을 위한 수치해석기법 개발)

  • 신승교;고태호;김문겸;임윤묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1031-1036
    • /
    • 2000
  • In this study, a numerical simulation that can effectively predict the strengthening effect of repaired aged RC structures is developed using the axial deformation link elements. In repaired structures, concrete and interface are modeled as quasi-brittle materials. An elastic-perfectly plastic constitutive relationship is introduced for reinforcing bars. Also, a linear-elastic relationship for repair materials such as FRP or CFS. Structural deterioration in terms of corrosion of steel rebar is considered. The interfacial property between steel and concrete which is reduced by corrosion of steel rebar is obtained by comparing numerical results with experimental results of pull out tests. Obtained values are used in repaired reinforced concrete structures under flexural loading conditions. To investigate strengthening effect of the structures repaired with carbon fiber sheet(CFS), repaired and unrepaired RC structures are analyzed numerically. From analysis, rip-off, debonding and rupture failure mechanisms of interface between substrate and CFS can be determined. Finally, strengthening effect according to the variation of interfacial material properties is investigated, and it is shown that interfacial material properties have influence on the mechanical behavior of repaired structure systems Therefore, the developed numerical method using axial deformation link elements can use for determining the strengthening effects and failure mechanism of repaired aged RC structure.

Response of a laterally loaded pile group due to cyclic loading in clay

  • Shi, Jiangwei;Zhang, Yuting;Chen, Long;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • In offshore engineering, lateral cyclic loading may induce excessive lateral movement and bending strain in pile foundations. Previous studies mainly focused on deformation mechanisms of single piles due to lateral cyclic loading. In this paper, centrifuge model tests were conducted to investigate the response of a $2{\times}2$ pile group due to lateral cyclic loading in clay. After applying each loading-unloading cycle, the pile group cannot move back to its original location. It implies that residual movement and bending strain are induced in the pile group. This is because cyclic loading induces plastic deformation in the soil surrounding the piles. As the cyclic load increases from 62.5 to 375 kN, the ratio of the residual to the maximum pile head movements varies from 0.30 to 0.84. Moreover, the ratio of the residual to the maximum bending strains induced in the piles is in a range of 0.23 to 0.82. The bending strain induced in the front pile is up to 3.2 times as large as that in the rear pile. Thus, much more protection measures should be applied to the front piles to ensure the serviceability and safety of pile foundations.

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

Temperature Effect on Tensile Fracture Behavior of Thermoplastic Glass Fiber/Polyethylene Composites (온도변화에 따른 열가소성 복합재료 유리섬유/폴리에틸렌의 인장파괴거동)

  • KOH S. W.;CHOI Y. K.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.326-330
    • /
    • 2004
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanics characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range $60^{\circ}C\;to\;-50^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at $-50^{\circ}C$, and it tended to decrease as the temperature increased from $-50^{\circ}C$. The major failure mechanisms was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.

  • PDF

FUNDAMENTAL UNDERSTANDING OF CRACKING AND BULGING IN COKE DRUMS

  • Penso, Jorge;Tsai, Chon
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.675-680
    • /
    • 2002
  • Cracking and bulging in welded and internally lined pressure vessels that work in thermal-mechanical cycling service have been well known problems in the petrochemical, power and nuclear industries. However, published literature and industry surveys show that similar problems have been occurring during the last 50 years. A better understanding of the causes of cracking and bulging causes is needed to improve the reliability of these pressure vessels. This study attempts to add information required for increasing the knowledge and fundamental understanding required. Typical examples of this problem are the coke drums in the delayed coking units refinery process. This case was selected for experimental work, field study and results comparison. Delayed coking units are among the refinery units that have higher economical yields. To shut down these units represents a high negative economical impact in refinery operations. Also, the maintenance costs associated with repairs are commonly very high. Cracking and bulging occurrences in the coke drums, most often at the weld areas, characterize the history of the operation of delayed coking units. To design and operate more robust coke drums with fewer problems, an improved metallurgical understanding of the cracking and bulging mechanisms is required. A methodology that is based field experience revision and metallurgical analyses for the screening of the most important variables, and subsequent finite element analyses to verify hypotheses and to rank the variables according to their impact on the coke drum lives has been developed. This indicated approach provides useful information for increasing coke drum reliability. The results of this work not only order the most important variables according to their impact in the life of the vessels, but also permit estimation of the life spans of coke drums. In conclusion, the current work shows that coke drums may fail as a combination of thermal fatigue and other degradation mechanisms such as: corrosion at high and low temperatures, detrimental metallurgical transformations and plastic deformation. It was also found that FEA is a very valuable tool for understanding cracking and bulging mechanisms in these services and for ranking the design, fabrication, operation and maintenance variables that affect coke drum reliability.

  • PDF

Development of Advanced Mechanical Analysis Models for the Bolted Connectors under Cyclic Loads (반복하중을 받는 볼트 연결부에 대한 역학적인 고등해석 모델의 개발)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.101-113
    • /
    • 2013
  • This paper intends to develop mechanical analysis models that are able to predict complete nonlinear behavior in the bolted connector subjected to cyclic loads. In addition, experimental data which were obtained from loading tests performed on the T-stub connections are utilized to validate the accuracy of analytical prediction and the adequacy of numerical modeling. The behavior of connection components including tension bolt uplift, bending of the T-stub flange, stem elongation, relative slip deformation, and bolt bearing are simulated by the multi-linear stiffness models obtained from the observation of their individual force-deformation mechanisms in the connection. The component springs, which involve the stiffness properties, are implemented into the simplified joint element in order to numerically generate the behavior of full-scale connections with considerable accuracy. The analytical model predictions are evaluated against the experimental tests in terms of stiffness, strength, and deformation. Finally, it can be concluded that the mechanical models proposed in this study have the satisfactory potential to estimate stiffness response and strength capacity at failure.

Experimental study on seismic behavior of two-storey modular structure

  • Liu, Yang;Chen, Zhihua;Liu, Jiadi;Zhong, Xu
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.273-289
    • /
    • 2020
  • Due to the unique construction method of modular steel buildings (MSBs) with units prefabricated fully off the site and assembled quickly on the site, the inter-module connection for easy operation and overall performance of the system were key issues. However, it was a lack of relevant research on the system-level performance of MSBs. This study investigated the seismic performance of two-storey modular steel structure with a proposed vertical rotary inter-module connection. Three full-scale quasi-static tests, with and without corrugated steel plate and its combination, were carried out to evaluate and compare their seismic behaviour. The hysteretic performance, skeleton curves, ductile performance, stiffness degradation, energy dissipation capacity, and deformation pattern were clarified. The results showed that good ductility and plastic deformation ability of such modular steel structures. Two lateral-force resistance mechanisms with different layout combinations were also discussed in detail. The corrugated steel plate could significantly improve the lateral stiffness and bearing capacity of the modular steel structure. The cooperative working mechanism of modules and inter-module connections was further analyzed. When the lateral stiffness of upper and lower modular structures was close, limited bending moment transfer may be considered for the inter-module connection. While a large lateral stiffness difference existed initially between the upper and lower structures, an obvious gap occurred at the inter-module connection, and this gap may significantly influence the bending moments transferred by the inter-module connections. Meanwhile, several design recommendations of inter-module connections were also given for the application of MSBs.