• Title/Summary/Keyword: Deformation Wear

Search Result 258, Processing Time 0.036 seconds

Pulse electrodeposition and characterization of Ni-$TiO_2$ nano composite coatings

  • Cho, Sung-Hun;Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.153-153
    • /
    • 2011
  • Ni $TiO_2$ nano composite coatings were fabricated by using pulse current electrodeposition technique at 100 Hz pulse frequency with a constant 50% pulse duty cycles and reference was taken with respect to the direct current electrodeposition. The properties of the composite coatings were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. XRD patterns of pulse deposited composite coatings were found to be changed from preferred (100) orientation to the random mixed orientations. The results demonstrated that the Vickers microhardness of composite coatings under pulse condition was significantly improved than that of pure nickel coating as well as direct current electrodeposited Ni-$TiO_2$ composite coatings. Wear tracks have shown the less plastic deformation at pulse condition with reduced coefficient of friction. Nickel matrix grain size was also found to be lower in pulse plated composite coatings as compared to direct current electrodeposited composite coatings.

  • PDF

Variation of Muscle Activity and Balance of the Lower Extremity by Deformed in Shoe Out-soles during One-leg Stance

  • Won-Jun Choi;Min-Je Jo;Doochul shin
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.2
    • /
    • pp.161-166
    • /
    • 2023
  • Objective: The purpose of the study was to investigate the effect of shoe sole deformation on the muscle activity and balance of the lower extremities when standing on one foot. Design: Crossed-control group study Methods: A total of 18 healthy adults participated in this study. 9 participants with normal shoe and 9 participants with deformed in shoe out-soles (wear shoes) were included. Muscle activity of the tibialis anterior, fibularis longus and gluteus medius during one leg standing was measured using a electromyography. A balance board was used to evaluate balance ability when standing on one leg. The balance ability when standing on one leg was measured by the sway speed and distance of the center of gravity. Results: Muscle activity of the tibialis anterior, fibularis longus and gluteus medius was no significant difference between groups (P > 0.05). Balance ability when standing on one leg was significantly different from the group wearing normal shoes in all variables related to the sway distance and sway speed of the center of gravity. Conclusions: Through this study, the wear of the outer sole of the shoe indirectly confirmed the effect on the wearer's lower extremity muscle activity and balance ability when standing on one foot. These results of this study are expected to be used as basic data for future studies on shoe wear, lower extremity muscle activity and balance ability.

Study on the Friction Characteristics of Advanced High Strength Steel Sheet (초고강도강판의 마찰특성에 관한 연구)

  • Kim, N.J.;Kim, S.H.;Jung, K.R.;Park, S.B.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.250-253
    • /
    • 2009
  • In this study, the friction test was performed to find friction characteristics of advanced high strength steel (AHSS) sheets and the multiple regression method was employed to obtain friction models. The friction coefficients associated with the lubricant viscosity, drawing speed, and blank holding pressure are measured. Differently from GA steel sheets, the effects of the lubricant viscosity and pulling speed are a little, which are explained by a theory of adhesion and wear as well as a deformation of friction surface. In addition, the effects of friction parameters are numerically represented by friction regression models.

  • PDF

Wear Characteristics of Diamond Wheel according to bond in Ceramic Grinding (세라믹 연삭에서 결합제에 따른 다이아몬드 휠의 마멸 특성)

  • 공재향;유봉환;소의열;이근상;유은이;임홍섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.75-81
    • /
    • 2002
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel during grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous finding of ceramics, cutting edge ratio of resinoid bond wheel decreased. For the case of vitrified bond wheel, cutting edge ratio did not change.

A Study on the Diamond Wheel Wear in Ceramic Grinding (세라믹 연삭에서 다이아몬드 숫돌 마멸에 관한 연구)

  • 공재향;유봉환;소의열;이근상;유은이
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.344-348
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness after using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous grinding of ceramics, cutting edge ratio of resinoid bond wheel decreases. For the case of vitrified bond wheel, cutting edge ratio does not change.

  • PDF

Relationship between Rolling Motion and Microstructural Change in Rolling Element (구름계의 미소조직 변화와 구름운동의 상호관계)

  • 차금환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.163-167
    • /
    • 1996
  • The life of rolling elements depends on various factors such as operating conditions and material properties. In this work, the effect of microstructure on the rolling behavior is investigated. Specially, the deformations in the substrate regions before and after rolling are compared. It is found that rolling action causes severe flow of material in the direction opposite to the rolling direction in the case of dry rolling direction. With lubrication, the deformation is more severe at the subsurface region rather than at the surface.

  • PDF

High Temperature Deformation Behavior of Fe-base High Strength Alloys (고강도 Fe계 합금의 고온 변형 특성)

  • Kwon, Woon-Hyun;Choi, Il-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.938-946
    • /
    • 2008
  • Fe-base amorphous alloy and two crystalline phases composite were fabricated. The effect of temperature and strain rate on mechanical properties was evaluated utilizing compression test. Mixture of non-crystalline and crystalline phases were found using X-ray diffraction (XRD) and differential thermal analysis (DTA) tests. Based on glass transition temperature and crystallization temperature. compression tests were performed in the temperature ranging from $560^{\circ}C$ to $700^{\circ}C$ with $20^{\circ}C$ interval. Relationship between microstructure, including fracture surface morphology, and mechanical behavior was studied. The peak stress of Fe-base amorphous alloy was over 2GPa and expected to have a good wear resistance, but it is expected hard to deform because of low ductility. The peak stress and elongation of two crystalline phases composite was over 1GPa and about 20%, therefore it is possible to deform high strength wear resistant materials such as engine valve.

Internal Flow Characteristic Analysis and Deformation of Foil Considering Slip between Foils (Foil사이의 미끄러짐을 고려한 Foil Bearing변형 및 내부유동특성해석)

  • Lee, S.H.;Won, C.S.;Hur, N.;Jeon, S.B.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.482-487
    • /
    • 2001
  • Leaf type foil bearings have been used successfully in many aerospace applications such as air cycle machines, turbocompressors and turboexpander. These applications are characterized by light loads, constant speeds and low to moderate temperatures. But, as system on start-up or shutdown, sliding contact between the shaft and foil surfaces cause wear. So, in present study, to understand pressure-flow characteristics and deformation of foil bearing, flow/structure interaction analysis was used. and using this method, 2D and 3D calculation was peformed for shape of foil bearing to know circumferential direction flow and leakage flow characteristics of axial direction.

  • PDF

Dynamic Compressive Creep of Extruded Ultra-High Molecular Weight Polyethylene

  • Lee, Kwon-Yong;David Pienkowski;Lee, Sungjae
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1332-1338
    • /
    • 2003
  • To estimate the true wear rate of polyethylene acetabular cups used in total hip arthroplasty, the dynamic compressive creep deformation of ultra-high molecular weight polyethylene (UHMWPE) was quantified as a function of time, load amplitude, and radial location of the specimen in the extruded rod stock. These data were also compared with the creep behavior of polyethylene observed under static loading. Total creep strains under dynamic loading were only 64%, 70%, and 61% of the total creep strains under static loading at the same maximum pressures of 2 MPa,4 MPa, and 8 MPa, respectively. Specimens cut from the periphery of the rod stock demonstrated more creep than those cut from the center when they were compressed in a direction parallel to the extrusion direction (vertical loading) whereas the opposite was observed when specimens were compressed in a direction perpendicular to the extrusion direction (transverse loading). These findings show that creep deformation of UHMWPE depends upon the orientation of the crystalline lamellae.

Deformation Behavior of Zr-based Bulk Metallic Glass by Indentation under Different Loading Rate Conditions (다른 하중속도 조건에서 압입에 의한 벌크 금속유리의 변형거동)

  • Shin, Hyung-Seop;Chang, Soon-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.42-47
    • /
    • 2004
  • Metallic glasses are amorphous meta-stable solids and are now being processed in bulk form suitable for structural applications including impact. Bulk metallic glasses have many unique mechanical properties such as high yield strength and fracture toughness, good corrosion and wear resistance that distinguish them from crystalline metals and alloys. However, only a few studies could be found mentioning the dynamic response and damage of metallic glasses under impact or shock loading. In this study, we employed a small explosive detonator for the dynamic indentation on a Zr-based bulk amorphous metal in order to evaluate the damage behavior of bulk amorphous metal under impact loading. These results were compared with those of spherical indentation under quasi-static and impact loading. The interface bonded specimens were adopted to observe the appearances of subsurface damage induced during indentation under different loading conditions.

  • PDF