• Title/Summary/Keyword: Deformation Tube

Search Result 388, Processing Time 0.021 seconds

Composite action of hollow concrete-filled circular steel tubular stub columns

  • Fu, Qiang;Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fang, Chang-jing
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.693-703
    • /
    • 2018
  • To better understand the influence of hollow ratio on the hollow concrete-filled circular steel tubular (H-CFT) stub columns under axial compression and to propose the design formula of ultimate bearing capacity for H-CFT stub columns, 3D finite element analysis and laboratory experiments were completed to obtain the load-deformation curves and the failure modes of H-CFT stub columns. The changes of the confinement effect between core concrete and steel tube with different hollow ratios were discussed based on the finite element results. The result shows that the axial stress of concrete and hoop stress of steel tube in H-CFT stub columns are decreased with the increase of hollow ratio. AfteGr the yield of steel, the reduction rate of longitudinal stress and the increase rate of circumferential stress for the steel tube slowed down. The confinement effect from steel tube on concrete also weakened slowly with the increase of hollow ratio. Based on the limit equilibrium method, a simplified formula of ultimate bearing capacity for the axially loaded H-CFT stub columns was proposed. The predicted results showed satisfactory agreement with the experimental and numerical results.

An Experimental Study on TR-CFT Columns subjected to Axial Force and Cyclic Lateral Loads (축력과 반복수평력을 받는 TR-CFT기둥에 관한 실험적 연구)

  • Park, Jai Woo;Kim, Jin Ho;Hong, Young Kyun;Hong, Gi Soup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.403-411
    • /
    • 2007
  • CFT (Concrete filled steel tube) column has become popular for building construction due to not only its composite effect but also economic effect. However, the conventional CFT column also has its own disadvantages having plastic buckling at the end of column followed by the reduction of strength by yielding of steel tube. An experiment on TR-CFT (Transversely reinforced CFT) column are conducted for making up for conventional CFT column's disadvantages. The experiment parameters are strength of concrete, the layer numbers of carbon fiber sheet. In this study, hysteretic curve, initial stiffness, strength, plastic deformation capacity, and dissipated energy are compared and analyzed between CFT and TR-CFT columns.

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

Diameter Evaluation for PHWR Pressure Tube Based on the Measured Data (측정 데이터 기반 중수로 압력관 직경평가 방법론 개발)

  • Jong Yeob Jung;Sunil Nijhawan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Pressure tubes are the main components of PHWR core and serve as the pressure boundary of the primary heat transport system. However, because pressure tubes have changed their geometrical dimensions under the severe operating conditions of high temperature, high pressure and neutron irradiation according to the increase of operation time, all dimensional changes should be predicted to ensure that dimensions remain within the allowable design ranges during the operation. Among the deformations, the diameter expansion due to creep leads to the increase of bypass flow which may not contribute to the fuel cooling, the decrease of critical channel power and finally the deration of the power to maintain the operational safety margin. This study is focused on the modeling of the expansion of the pressure tube diameter based on the operating conditions and measured diameter data. The pressure tube diameter expansion was modeled using the neutron flux and temperature distributions of each fuel channel and each fuel bundle as well as the measured diameter data. Although the basic concept of the current modeling approach is simple, the diameter prediction results using the developed methodology showed very good agreement with the real data, compared to the existing methodology.

A Study on the Degradation Evaluation of X20CrMoV12.1 Steel (X20CrMoV12.1강의 열화평가에 관한 연구)

  • Lee, S.H.;Kim, T.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

Seismic performance of high-strength steel framed-tube structures with bolted web-connected replaceable shear links

  • Lian, Ming;Cheng, Qianqian;Guan, Binlin;Zhang, Hao;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.323-339
    • /
    • 2020
  • In steel framed-tube structures (SFTSs), the plastic hinges at beam-ends cannot be adequately improved because of the large cross sections of spandrel beams, which results in the lower ductility and energy dissipation capacities of traditional SFTSs. To address this drawback, high-strength steel fabricated SFTSs with bolted web-connected replaceable shear links (HSFTS-SLs) have been proposed. In this system, shear links use conventional steel and are placed in the middle of the deep spandrel beams to act as energy dissipative components. In this study, 2/3-scaled HSFTS-SL specimens were fabricated, and cyclic loading tests were carried out to study the seismic performance of both specimens. The finite element models (FEMs) of the two specimens were established and the numerical results were compared with the test results. The results showed that the specimens had good ductility and energy dissipation capacities due to the reliable deformation capacities. The specimens presented the expected failure modes. Using a shorter shear link can provide a higher load-carrying capacity and initial elastic lateral stiffness but induces lower ductility and energy dissipation capacity in HSFTS-SLs. The performance of the specimens was comparable to that of the original sub-structure specimens after replacing shear links. Additionally, the expected post-earthquake recoverability and resilience of the structures could be achieved by replacing shear links. The acceptable residual interstory drift that allows for easy replacement of the bolted web-connected shear link was 0.23%. The bolted web-connected shear links had reliable hysteretic responses and deformation capacities. The connection rotation had a notable contribution to total link rotation. The results of the numerical analysis run for the proposed FEMs were consistent with the test results. It showed that the proposed FEMs could be used to investigate the seismic performance of the HSFTS-SL.

Wear, microleakage and plastic deformation of an implant-supported chair-side bar system

  • Mehl, Christian Johannes;Steiner, Martin;Ludwig, Klaus;Kern, Matthias
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.323-328
    • /
    • 2015
  • PURPOSE. This in-vitro study was designed to evaluate retention forces, microleakage and plastic deformation of a prefabricated 2-implant bar attachment system (SFI-Bar, Cendres+$M{\acute{e}}taux$, Switzerland). MATERIALS AND METHODS. Two SFI implant-adapters were torqued with 35 Ncm into two implant analogues. Before the tube bars were finally sealed, the inner cavity of the tube bar was filled with liquid red dye to evaluate microleakage. As tube bar sealing agents three different materials were used (AGC Cem (AGC, resin based), Cervitec Plus (CP; varnish) and Gapseal (GS; silicone based). Four groups with eight specimens each were tested (GS, GS+AGC, AGC, CP). For cyclic loading, the attachment system was assembled parallel to the female counterparts in a chewing simulator. The mean retention forces of the initial and final ten cycles were statistically evaluated (ANOVA, ${\alpha}{\leq}.05$). RESULTS. All groups showed a significant loss of retention forces. Their means differed between 30-39 N initially and 22-28 N after 50,000 loading cycles. No significant statistical differences could be found between the groups at the beginning (P=.224), at the end (P=.257) or between the loss of retention forces (P=.288). Microleakage occurred initially only in some groups but after 10,000 loading cycles all groups exhibited microleakage. CONCLUSION. Long-term retention forces of the SFI-Bar remained above 20 N which can be considered clinically sufficient. The sealing agents in this study are not suitable to prevent microleakage.

Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding (다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구)

  • Kim, Taeyong;Lee, Jeonghyeon;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.