• 제목/요약/키워드: Deformation Tube

검색결과 388건 처리시간 0.023초

하이드로 피어싱에서의 변형 특성 연구 (A study on deformation characteristics of tube hydro-piercing process)

  • 최성기;안익태;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.237-240
    • /
    • 2003
  • Deformation surrounding the hole in the tube during the hydro-piercing process has been investigated in this study. The tube is expanded and internally pressurized between upper and lower dies, and a piercing punch is driven forcefully through a cross passage in the die and through the wall of the tube. The pressurized fluid within the tube provides support to the wall of the tube during a piercing step to form a hole in the tube having less deformation surrounding the hole in the tube. The deformation area may be fully retracted to a substantially flat form or partially retracted to a countersunk form. In this study, a mathematical model that can predict deformation surrounding the hole has been proposed and experimentally verified by actual hydro-piercing test.

  • PDF

하이드로 피어싱된 튜브 부위의 변형해석 (Analysis of Deformation Surrounding the Pierced Hole in the Tube Hydro-Piercing Process)

  • 최성기;김동규;문영훈
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.154-159
    • /
    • 2004
  • Deformation surrounding the hole in the tube during the hydropiercing process has been investigated in this study. The tube is expanded and internally pressurized between upper and lower dies, and a piercing punch is driven forcefully through a cross passage in the die and through the wall of the tube. The pressurized fluid within the tube provides support to the wall of the tube during a piercing step to form a hole in the tube having less deformation surrounding the hole in the tube. The deformation area may be fully retracted to a substantially flat form or partially retracted to a countersunk form. In this study, a mathematical model that can predict deformation surrounding the hole has been proposed and experimentally verified by actual hydropiercing test.

자동차용 플라스틱 연료튜브의 환경온도에 따른 후변형에 관한 연구 (A Study on the Post Deformation According to an Environmental Temperature of the Plastic Fuel Tube for Automobile)

  • 박정식;문찬용;정영득
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.56-60
    • /
    • 2003
  • Recently the plastic fuel tube is usually used to reduce production cost and weight in automobiles. These days, material used to plastic fuel tube is the polyamide12. The fuel tube is made of the PA12. Post deformation of the tube has been changed by environmental temperature. So, it is important to prevent post deformation. The experiment is performed to investigate post deformation of the tube produced by each bending process. In this study, the results we obtained are used to bending process system for post deformation as the environmental temperature of the tube. It turned out that the method of steam heating and air cooling was shown less deformation than other methods.

  • PDF

An experimental study on creep deformation of thin-walled tubes under pure bending

  • Hsu, Chien-Min;Fan, Chun-Huei
    • Structural Engineering and Mechanics
    • /
    • 제9권4호
    • /
    • pp.339-347
    • /
    • 2000
  • The creep deformation of pure bending (hold constant moment for a period of time) tests were conducted in this paper. Thin-walled tubes of 304 stainless steel were used in this investigation. The curvature-ovalization measurement apparatus, designed by Pan et al. (1998), was used for conducting the present experiments. It has been found that as soon as the creep deformation is started, the magnitudes of the tube curvature and ovalization of tube cross-section quickly increase. The magnitudes of the creep curvature and ovalization of tube cross-section increase fast with a higher hold moment than that with a lower one. Owing to the continuously increasing curvature during the creep deformation, the tube specimen buckles eventually.

증기발생기 전열관 Alloy 690TT의 소성변형이 표면특성 및 미세조직에 미치는 영향 (Effects of Plastic Deformation on Surface Properties and Microstructure of Alloy 690TT Steam Generator Tube)

  • 전순혁;한지영;심희상;김성우
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.16-24
    • /
    • 2024
  • Denting of steam generator (SG) tube is defined as the reduction in tube diameter due to the stresses exerted by the corrosion products formed on the outer diameter surface. This phenomenon is mostly observed in the crevices between SG tube and the top-of tubesheet or tube support plate. Despite the replacement of SG tube with Alloy 690, which has better corrosion resistance than Alloy 600, the denting of SG tube still remains a potential problem that could decrease the SG integrity. Deformation of SG tube by denting phenomenon can affect the surface properties and microstructure of SG tube. In this study, the effects of plastic deformation on surface properties and microstructure of Alloy 690 thermally treated (TT) tube was investigated by using the various analysis techniques. The plastic deformation of Alloy 690 increased the surface roughness and area. Many surface defects such as ripped surface and micro-cracks were observed on the deformed Alloy 690TT specimen. Based on the electron backscatter diffraction analysis, the dislocation density of deformed SG tube increased compared to non-deformed SG tube. In addition, the effects of changes in surface properties and microstructure of SG tube on general corrosion behavior were discussed.

초등해법을 이용한 철도차량 변형튜브 성능 예측에 관한 연구 (Prediction of the Performance of a Deformation Tube for Railway Cars using the Slab Method)

  • 김진모;이종길;김기남
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.124-129
    • /
    • 2016
  • Recently, global railway car makers are competing desperately in developing high-speed railway vehicles. Ensuring passenger safety during a crash is essential. The design and the manufacturing of energy absorbing components are becoming more and more important. A deformation tube is a typical passive energy absorbing component for railway cars. In the current study the slab method was used to predict the energy absorbing capability of a deformation tube during the early design stage. The usefulness of the prediction method is verified through the comparisons between the results of FE simulations and those of the prediction method.

자전거 프레임 특정부분의 보강효과와 프레임에 미치는 응력과 변형 연구

  • 김태훈;양동민;하윤수
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, 2 kinds of models about bike frame are simulated with static structural analysis. A bike frame with diamond type is compared with another model that Down tube is eliminated from original diamond frame. About both types of models, Property of a material and conditions of restriction & load are the same. This study shows reinforcement effects of a partial frame by adding down tube and impacts generated by applying a load at the frame such as weak points & high stress parts as well as expected deformation. The structural result of this study indicates that the equivalent stress or total deformation decreases by 57.1% or 36.4%, respectively. Also stress concentration sites are leg connecting parts, front/rear wheels fixed region and Max deformation is generated from Seat tube. In conclusion, A Down tube is highly efficient as reinforcement than frame without non down tube. Furthermore, The safety rises in case of reducing top tube thickness and increasing a reinforcement at leg connecting parts or concentration regions.

  • PDF

수치해석을 이용한 튜브 연동식 펌프의 변형에 대한 연구 (The Study About Deformation of a Peristaltic Pump using Numerical Simulation)

  • 왼바흥;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.652-658
    • /
    • 2015
  • The purpose of this study is to investigate the effects of changing dimension of a soft tube in a peristaltic pump on deformation, stress and fluid flow rate of the peristaltic pump. Geometries of the peristaltic pump is created in a Catia drawing software based on specifications of a real peristaltic pump. Afterwards, the geometries of this pump is imported into a commercial Ansys software to calculate deformation, stress, and fluid flow rate of this pump. The simulation results showed that the deformation and stress of the soft tube is increased by increasing soft tube diameter from 2 mm to 4 mm. When the tube diameter is increased to 5 mm and tube thickness is reduced to 0.5 mm, the soft tube is damaged. The highest fluid flow rate could be found at the tube thickness and diameter of 1 mm and 4 mm, respectively.

탄소성 대변형 해석을 이용한 콘크리트 충전강관(CFT) 기둥의 극한강도에 관한 해석적 연구 (An Analytical Investigation on the Ultimate Strength of Concrete-Filled Steel Tube Columns using Elasto-Plastic Large Deformation Analysis)

  • 장갑철;장경호
    • 한국공간구조학회논문집
    • /
    • 제7권6호
    • /
    • pp.69-74
    • /
    • 2007
  • 교량의 교각과 같은 원형기둥구조물의 성능과 강도을 향상시키기 위해 최근 콘크리트 충전강관(CFT: concrete-filled steel tube)의 적용이 점차 증가하고 있다. 이러한 콘크리트 충전강관 구조물의 정확한 소성설계를 위해서는 사용된 재료인 강재 및 콘크리트의 대변형 거동을 구현할 수 있는 소성모델이 필요하다. 본 연구에서는 사용강재의 실험을 통하여 제안된 소성모델을 적용한 탄소성 대변형 해석을 개발하였으며 콘크리트 충전강관 기둥 해석과 실험 결과에 비교하여 그 정도 및 타당성을 검증하였다. 그리고 개발된 프로그램을 이용하여 콘크리트 충전강관 기둥의 초기처짐이 극한장도에 미치는 영향 및 상관관계를 명확히 파악하였다.

  • PDF

Shear strength analyses of internal diaphragm connections to CFT columns

  • Kang, Liping;Leon, Roberto T.;Lu, Xilin
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1083-1101
    • /
    • 2015
  • Previous theoretical equations for the shear capacity of steel beam to concrete filled steel tube (CFT) column connections vary in the assumptions for the shear deformation mechanisms and adopt different equations for calculating shear strength of each component (steel tube webs, steel tube flanges, diaphragms, and concrete etc.); thus result in different equations for calculating shear strength of the joint. Besides, shear force-deformation relations of the joint, needed for estimating building drift, are not well developed at the present. This paper compares previously proposed equations for joint shear capacity, discusses the shear deformation mechanism of the joint, and suggests recommendations for obtaining more accurate predictions. Finite element analyses of internal diaphragm connections to CFT columns were carried out in ABAQUS. ABAQUS results and theoretical estimations of the shear capacities were then used to calibrate rotational springs in joint elements in OpenSEES simulating the shear deformation behavior of the joint. The ABAQUS and OpenSEES results were validated with experimental results available. Results show that: (1) shear deformation of the steel tube dominates the deformation of the joint; while the thickness of the diaphragms has a negligible effect; (2) in OpenSEES simulation, the joint behavior is highly dependent on the yielding strength given to the rotational spring; and (3) axial force ratio has a significant effect on the joint deformation of the specimen analyzed. Finally, modified joint shear force-deformation relations are proposed based on previous theory.