• Title/Summary/Keyword: Deformation Term

Search Result 323, Processing Time 0.028 seconds

Real-time condition assessment of railway tunnel deformation using an FBG-based monitoring system

  • Zhou, Lu;Zhang, Chao;Ni, Yi-Qing;Wang, Chung-Yue
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.537-548
    • /
    • 2018
  • A tunnel deformation monitoring system is developed with the use of fiber Bragg grating (FBG) sensing technique, aiming at providing continuous monitoring of railway tunnel deformation in the long term, and early warning for the rail service maintainers and authorities to avoid catastrophic consequences when significant deformation occurs. Specifically, a set of FBG bending gauges with the ability of angle measurement and temperature compensation is designed and manufactured for the purpose of online monitoring of tunnel deformation. An overall profile of lateral tunnel displacement along the longitudinal direction can be obtained by implementing an array of the FBG bending gauges interconnected by rigid rods, in conjunction with a proper algorithm. The devised system is verified in laboratory experiments with a test setup enabling to imitate various patterns of tunnel deformation before the implementation of this system in an in-service high-speed railway (HSR) tunnel.

A Study on Substitution of Steel structure for Casting Frame (주조 프레임을 강 구조물로의 대체에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.142-149
    • /
    • 1999
  • A machine frame has been manufactured by casting. However, due to the development of the industrial society, 3-D duties was refused. Especially, the declination of the casting industry makes it difficult to produce the frame. Many companies still manufacture the small casting products. The large casting products are extremely limited and manufactured for their own use. Therefore, it is difficult to keep the term of order. In this study, the characteristics of steel structure which is produced by welding were identified in the view of mechanical strength of steel structure which is produced by welding were identified in the view of mechanical strength to substitute steel structure for casting frame. But welding structure has the residual stress, HAZ and welding deformation. Residual stress and HAZ especially cause crack growth. The proposed steel structure, based on the simulation and experiment(tensile curve and S-N curve), can reduce not only the producting term but also the weight of the frame.

  • PDF

Behavior of Geosynthetic Reinforced Modular Block Walls under Sustained Loading (지속하중 재하시 보강토 옹벽의 거동특성 - 축소모형실험)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Byun, Jo-Seph;Kim, Young-Hoon;Han, Dae-Hui
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.121-130
    • /
    • 2006
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when used as part of permanent structures. In view of these concerns, time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained loads were investigated using reduced-scale model tests. The results indicated that a sustained load can yield appreciable magnitude of residual deformation, and that the magnitude of residual deformation depends on the loading characteristic as well as reinforcement stiffness.

  • PDF

Stability evaluation of foundation settlement of power transmission tower (송전철탑의 기초침하에 대한 안정성 평가)

  • Lee, Dae-Soo;Cho, Hwa-Kyung;Kim, Dae-Hong;Ham, Bang-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.687-696
    • /
    • 2005
  • Safety diagnosis was conducted to evaluate the long-term stability evaluation of power transmission tower of which deformation of the upper structural elements occurred. To assess the cause of the structural deformation, field investigation including BIPS, down-hole test, concrete pile coring and finite element analysis were carried out. From these studies, the major cause of deformation was found due to the heavily fractured layer and weathered soil topography at the pile tip area. The cement-milk grouting method was proposed to reinforce these weak zone around the pile tip area. Also, the increase of cross-section and stiffness for steel members of upper tower structures was suggested. Instrumental monitoring was proposed as well to verify reinforcing effect.

  • PDF

Buckling of plates including effect of shear deformations: a hyperelastic formulation

  • Musa, Idris A.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1107-1124
    • /
    • 2016
  • Consistent finite strain Plate constitutive relations are derived based on a hyperelastic formulation for an isotropic material. Plate equilibrium equations under finite strain are derived following a static kinematic approach. Three Euler angles and four shear angles, based on Timoshenko beam theory, represent the kinematics of the deformations in the plate cross section. The Green deformation tensor has been expressed in term of a deformation tensor associated with the deformation and stretches of an embedded plate element. Buckling formulation includes the in-plane axial deformation prior to buckling and transverse as well as in-plane shear deformations. Numerical results for a simply supported thick plate under uni-axial compression force are presented.

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

Real-time SCR-HP(Selective catalytic reduction - high pressure) valve temperature collection and failure prediction using ARIMA (ARIMA를 활용한 실시간 SCR-HP 밸브 온도 수집 및 고장 예측)

  • Lee, Suhwan;Hong, Hyeonji;Park, Jisoo;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.62-67
    • /
    • 2021
  • Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.

Long-term behavior of prestressed concrete beam with corrugated steel web under sustained load

  • Motlagh, Hamid Reza Ebrahimi;Rahai, Alireza
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.809-819
    • /
    • 2022
  • This paper proposes a method to predict the deflection of prestressed concrete (PC) beams with corrugated steel web (CSW) under constant load concerning time-dependent variation in concrete material. Over time, the top and bottom concrete slabs subjected to asymmetric compression experience shrinkage and creep deformations. Here, the classical Euler-Bernoulli beam theory assumption that the plane sections remain plane is not valid due to shear deformation of CSW. Therefore, this study presents a method based on the first-order shear deformation to find the long-term deflection of the composite beams under bending by considering time effects. Two experimental prestressed beams of this type were monitored under their self-weight over time, and the theoretical results were compared with those data. Additionally, 3D analytical models of the experimental beams were used according to material properties, and the results were compared with two previous cases. There was good consistency between the analytical and numerical results with low error, which increased by wave radius. It is concluded that the proposed method could reliably be used for design purposes.

ON COMPLEX VARIABLE METHOD IN FINITE ELASTICITY

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.183-198
    • /
    • 2003
  • We highlight the alternative presentation of the Cauchy-Riemann conditions for the analyticity of a complex variable function and consider plane equilibrium problem for an elastic transversely isotropic layer, in finite deformation. We state the fundamental problems and consider traction boundary value problem, as an example of fundamental problem-one. A simple solution of“Lame's problem”for an infinite layer is obtained. The profile of the deformed contour is given; and this depends on the order of the term used in the power series specification for the complex potential and on the material constants of the medium.