• Title/Summary/Keyword: Deformation Pattern

Search Result 530, Processing Time 0.027 seconds

Assessment of negative Poisson's ratio effect on thermal post-buckling of FG-GRMMC laminated cylindrical panels

  • Shen, Hui-Shen;Xiang, Y.
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.423-435
    • /
    • 2021
  • This paper examines the thermal post-buckling behaviors of graphene-reinforced metal matrix composite (GRMMC) laminated cylindrical panels which possess in-plane negative Poisson's ratio (NPR) and rest on an elastic foundation. A panel consists of GRMMC layers of piece-wise varying graphene volume fractions to obtain functionally graded (FG) patterns. Based on the MD simulation results, the GRMMCs exhibit in-plane NPR as well as temperature-dependent material properties. The governing equations for the thermal post-buckling of panels are based on the Reddy's third order shear deformation shell theory. The von Karman nonlinear strain-displacement relationship and the elastic foundation are also included. The nonlinear partial differential equations for GRMMC laminated cylindrical panels are solved by means of a singular perturbation technique in associate with a two-step perturbation approach and in the solution process the boundary layer effect is considered. The results of numerical investigations reveal that the thermal post-buckling strength for (0/90)5T GRMMC laminated cylindrical panels can be enhanced with an FG-X pattern. The thermal post-buckling load-deflection curve of 6-layer (0/90/0)S and (0/90)3T panels of FG-X pattern are higher than those of 10-layer (0/90/0/90/0)S and (0/90)5T panels of FG-X pattern.

A Study on Flashless Non-Axisymmetric Forging (플래시 없는 비축대칭 단조에 관한 연구)

  • Bae, Won-Byong;Kim, Young-Ho;Choi, Jae-Chan;Lee, Jong-Heon;Kim, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.42-52
    • /
    • 1995
  • An UBET(Upper Bound Elemental Techniquel) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless non-axisymmetric forging. To analyze the process easily, it is suggested that the deforma- tion is divided into two different parts. Those are axisymmetric part in corner and plane- strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, form which the upper-bound forging load, the flow pattern, the grid pattern, the velocity distribution and the effective strain are deter- mined. To show the merit of flashless forging, the results of flashless and flash-forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

Influence of stiffeners on the performance of blind-bolt end-plate connections to CFST columns

  • Ding, Fa-xing;Pan, Zhi-cheng;Liu, Peng;Huang, Shi-jian;Luo, Liang;Zhang, Tao
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.447-462
    • /
    • 2020
  • The paper aims to investigate the mechanical mechanism and seismic effect of stiffeners in blind bolt endplate connection to CFST column. A precise 3D finite element model with considering the cyclic properties of concrete and steel materials was established, and the efficiency was validated through monotonic and cyclic test data. The deforming pattern and the seismic performance of the unstiffened and stiffened blind bolt endplate connections were investigated. Then a parametric analysis was conducted to analyze the contribution of stiffeners and the joint working behaviors with endplate under cyclic load. The joint stiffness classifications were compared and a supplement stiffness classification method was proposed, and the energy dissipation ability of different class connections were compared and discussed. Results indicated that the main deformation pattern of unstiffened blind bolt endplate connections was the local bending of end plate. The vertical stiffeners can effectively alleviate the local bending deformation of end plate. And influence of stiffeners in thin endplate and thick endplate was different. Based on the stiffness of external diaphragm welded connection, a more detailed rigidity classification was proposed which included the pin, semi-rigid, quasi-rigid and rigid connection. Beam was the main energy dissipation source for rigid connection. For the semi-rigid and quasi-rigid connection, the extended endplate, stiffeners and steel beam would all participate in the energy dissipation.

A Study Conceming the Designs of the Afro Fashion (아프로 패션에 관(關)한 디자인 연구(硏究))

  • Kim, Chi-Eun;Cho, Kyu-Hwa
    • Journal of Fashion Business
    • /
    • v.2 no.1
    • /
    • pp.25-34
    • /
    • 1998
  • This study has it's purpose in examining the materialized background. characteristic of African traditional costume and the A fro fashion of the year 1960. and it's influence on the contemporary fashion. Then the findings are applied to suggest a new way of image creation. 1960' s was the year in which people tried to free oneself from the ruling culture of the social standards. war. and the development of science. By such movement. people started to get interested in the environment and ecology. This then lead to the interest of the rights of the minority. With the youngs as the central figure A fro hair style and dashiki appeared as the street fashion. The characteristics of African costume applied to A fro fashion in 1990' s is as below. First. the North African style. Djellaba. and wrap style in the most common silhouette. Second. heavy materials such as stone. copper. silver. and gold are used. Necklace can be classified according to it's simple but. modern style. delicate but grand style. Bracelets are however. broad in width and many rings are worn widely. Third. Multi colored stripe and prints inspired by tattoo and deformation using red brown. dark beige. and orange are printed on textiles such as see through. Fourth. image of tattoo and deformation are applied to make-up. A fro hair and corn beads are also African taste. Fifth. African taste in recent fashion showed off the black beauty by appointing black models at the collection. In analyzing the study done above. characteristic images of African costume. accessaries and body painting was applied in presenting 3 creative designs. The first design named "Geometric I", took it's motif from the geometric pattern of the body painting with the afro hair. "Geometric II", the second design, showed it's application of geometric pattern of mutilation and the silhouette of the costume by using the see through. The third design called the "Geometric III" showed that the aesthetic and decorative side of clothing can be satisfied by applying various form and color of accessaries as the motif. A fro fashion is chosen as one of the folklore mood and it's beauty is conveyed on till today.

  • PDF

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

Application of Principal Component Analysis in Automobile Body Assembly : Case Study (자동차 차체 조립공장에서 주성분 분석의 응용 : 사례 연구)

  • Lee, Myung-D.;Lim, Ik-Sung;Kim, Eun-Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Multivariate analysis is a rapidly expanding approach to data analysis. One specific technique in multivariate analysis is Principal Component Analysis (PCA). PCA is a statistical technique that linearly transform a given set of variables into a new set of composite variables. These new variables are orthogonal to each other and capture most of the information in the original variables. PCA is used to reduce the number of control points to be checked by measurement system. Therefore, the structure of the data set is simplified significantly It is also shown that eigenvectors obtained by conducting principal component analysis on the basis of the covariance matrix can be used to physically interpret the pattern of relative deformation for the points. This case study reveals the twisting deformation pattern of the underbody which is the largest mode of the total variation.

Response Analysis of Buried Pipeline Subjected to Longitudinal Permanent Ground Deformation (종방향 영구지반변형에 대한 지중 매설관로의 거동특성 해석)

  • 김문겸;임윤묵;김태욱;박종헌
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.51-61
    • /
    • 2002
  • In this research, a numerical algorithm is developed for the response analysis of burined pipelines considering longitudinal permanent ground deformation(PGD) due to liquefaction induced lateral spreading. Buried pipelines and surrounding soil are modeled as continuous pipelines using the beam elements and a series of elasto-plastic springs represented for equivalent soil stiffness, respectively. Idealized various PGD patterns based on the observation of PGD are used as a loading configuration and the length of the lateral spread zone is considered as loading parameter. Numerical results are verified with other research results and efficient applicability of developed procedure is shown. Analyses are performed by varying different parameters such as PGD pattern, pipe diameter and pipe thickness. Through these procedures, relative influences of various parameters on the response of buried pipeline subject to longitudinal PGD are investigated.

The Brief as a Measurement Garment (3차원 인체측정을 위한 측정용 브리프에 관한 연구)

  • Lee, Jun-Ok;Choi, Kyung-Mi;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.329-334
    • /
    • 2008
  • The purpose of this research is to develop the design, pattern and size system of brief as a measurement garment in order to obtain more precise silhouettes and sizes of the body in 3D measurements. The results of this research are as follows: First, nylon/lycra materials which elasticity is equivalent to 18%(wale) and 27%(course), were selected as a material for briefs to minimize possible error in measurement and deformation of body shape caused by looseness or tightness in its measured parts. And T-back style design was selected, of which briefs neither deform human body nor cause overlapping or excessive tightness when was put on the measurement garment over it. Second, different darts for men and women were adopted into the pattern in consideration for the shape of hip. Third, the waist band of briefs was located between the waistline and abdominal girth line so that it didn't interfere with measurement, and using a wide band of 40mm minimized the tightness of the human body. In addition, the stitch lines and sewing procedure were simplified to minimize the deformation of body shape resulting from inseams and stitch lines. Finally, for the size of briefs, 6 cm intervals were set on the basis of the waist girth and 8 kinds for men and 6 kinds for women were selected in descending order of appearance rate by the interval sections. English T meaning T-back design and numbers representing the waist girth were marked in parallel for the name of size.

Porous Structures with Negative Poisson's Ratio using Pattern Transformation Triggered by Deformation (변형에 의한 패턴변화를 활용한 음의 포아송비 다공성 구조)

  • Oh, Myung-Hoon;Choi, Myung-Jin;Byun, Tauk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.275-282
    • /
    • 2017
  • In this paper, using a pattern transformation triggered by deformation, we propose a porous structure that exhibits the characteristic of negative Poisson's ratio in both tension and compression. Due to the lack of torque for rotational motion of ligaments, the existing porous structure of circular holes shows positive Poisson's ratio under tension loading. Also, the porous structure of elliptic holes has a drawback of low durability due to stress concentration. Thus, we design curved ligaments to increase the rotational torque under tension and to alleviate the stress concentration such that strain energy is uniformly distributed in the whole structure. The developed structure possesses better stiffness and durability than the existing structures. It also exhibits the negative Poisson ratio in both compression and tension of 10% nominal strain. Through nonlinear finite element analysis, the performance of developed structure is compared with the existing structure of elliptic holes. The developed structure turns out to be significantly improved in terms of stiffness and durability.