• Title/Summary/Keyword: Deformation Pattern

Search Result 523, Processing Time 0.032 seconds

Deformation and Fracture Behavior of Structural Bulk Amorphous Metal under Quasi-Static Compressive Loading (준정적 압축하에서 구조용 벌크 아몰퍼스 금속의 변형 및 파괴거동)

  • Shin, Hyung-Seop;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1630-1635
    • /
    • 2003
  • The deformation and fracture behaviors of a bulk amorphous metal, Zr-based one (Zr$\_$41.2/Ti$\_$13.8/Cu$\_$12.5/Ni$\_$10/Be$\_$22.5/: Vitreloy), were investigated over a strain rate range (7x10$\^$-4/~4 s$\^$-1/). The uniaxial compression test and the indentation test using 3mm-diameter WC balls were carried out under quasi-static loading conditions. As a result, at the uniaxial compressive state, the fracture stress of the material was very high (~1,700MPa) and the elastic strain limit was about 2%. The fracture strength showed a strain rate independent behavior up to 4 s$\^$-1/. Using indentation tests, the plastic deformation behavior of the Zr-based BAM up to a large strain value of 15% could be achieved, even though it was the deformation under locally constrained condition. The Meyer hardness of the Zr-based BAM measured by static indentation tests was about 5 GPa and it revealed negligible strain hardening behavior. At indented sites, the plastic indentation occurred forming a crater and well-developed multiple shear bands were generated around it along the direction of 45 degree when the indentation load exceeded 7kN. With increasing indentation load, shear bands became dense. The fracture surface of the specimen after uniaxial compressive tests showed vein-like pattern, typical morphology of many BAMs.

A Study on the Quantitative Measurement of In-plane Displacement of Carbon Steel for Machine Structures according to Rolling Direction using a dual-beam Shear Interferometer (듀얼 빔 전단간섭계를 이용한 압연방향에 따른 기계구조용 탄소강의 면내 변위 정량적 측정에 대한 연구)

  • Kang, Chan-Geun;Kim, Sang Chae;Kim, Han-Sub;Lee, Hang-Seo;Jung, Hyun-il;Jung, Hyun-Chul;Song, Jae-Geun;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an in-plane deformation measuring system using a dual-beam shear interferometer was constructed to measure the in-plane deformation of the measuring object. The in-plane deformation of the object was quantitatively measured according to the load and surface treatment conditions of the object. We also verified the reliability of the proposed technique by simultaneously performing the technique with an electronic speckle pattern interferometry system (ESPI), which is another laser application measurement technology. Digital shearography directly measures the deformation gradient or strain components and has the advantages of being full-field, noncontact, highly sensitive, and robust. It offers a much higher measurement sensitivity compared with noncoherent measurement methods and is more robust and applicable to in-field tests.

Investigation of the behavior of a tunnel subjected to strike-slip fault rupture with experimental approach

  • Zhen Cui;Tianqiang Wang;Qian Sheng;Guangxin Zhou
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-486
    • /
    • 2023
  • In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.

Adaptive Image Binarization for Automated Surface Strain Measurment (판재 곡면변형률 자동측정을 위한 적응 2치영상화)

  • Shin, Gun Il;Kwon, Ho Yeol;Kim, Hyong-Jong
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.21-29
    • /
    • 1997
  • In this paper, an adaptive image binarization scheme is proposed for automated surface strain measurement. At first, we reviewed an image based 3D deformation factor measurement briefly. Then, a new adaptive thresholding method is proposed for the extraction of lattice pattern from a deformed plate image using its local mean and variance. Some experimental results are presented to verify the effectiveness of our approaches.

  • PDF

On the Crustal Deformation Study Using Permanent GPS Station in Korea Peninsula

  • YUN, Hong-Sic;CHO, Jae-Myoung
    • Korean Journal of Geomatics
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • This paper deals with the characteristics of strain pattern by using permanent GPS stations in Korea in terms of seismic activity and tectonics. Fourteen GPS stations involved in precise baseline vector solution and horizontal strain components were calculated using the differences of mean baseline from ten deily solutions during the time span of three years. The mean rate of maximum shear strain if 0.12 $\mu$/yr. The mean direction of principal axes of the compression is about $85^{\circ}$ N.

  • PDF

The Forming Limit of Flange in the Radial Extrusion (레이디얼 압출에서 플랜지의 성형한계)

  • 고병두;장동환;최호준;임중연;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.228-235
    • /
    • 2003
  • In this paper, the workability of flange in the radial extrusion is analyzed in terms of the deformation pattern, the punch load and the forming limit by using simulation and experiment. A single action pressing is applied to both simulation and experiment. The analysis in this study is focused on the transient extrusion into the gap in radial direction with various gap heights and die corner radius. Based on the surface strains where surface cracking occurs, the forming patterns and strain-fracture relationships in producing radially extruded flange are obtained.

Nonlinear Analysis of the Monoleaflet Polymer Valve According to Shape of Supporting Members (지지대 형상에 따른 단엽식 고분자 판막의 비선형 해석)

  • 한근조;안성찬;심재준;김성윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.748-751
    • /
    • 2001
  • Monoleaflet polymer artificial heart valve was known to show remarkable improvement in antithrombosis and pressure drop compared with other type of artificial valve. In this investigation monoleaflet the vertical and horizontal deflection pattern of polymer heart valve with three types of supporting members straight member, and two curved members was analysed using the large deformation nonlinear finite element method.

  • PDF

Soil-Reinforcement Interaction to Restrain Differential Settlement of Buried Pipeline (지반-보강재 상호작용에 의한 매설관의 부등침하 억제효과)

  • 손준익;정하익
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.29-33
    • /
    • 1991
  • This paper reports the application study of the ground reinforement under a buried pipeline subjected to differential settlement via a finite element modelling. The Soil-reinforrement interaction helps to mimimize the differential settlement between the adjoining pipe segments. The settlement pattern and deformation slope of a pipeline have been evaluated for a boundary condition at the joint between a rigid structure and apipeline. The analysis results are compared for both non-reinforied and reinforced cases to measure the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF

A Study of the field distribution in focal plane for the shape deformations of Satellite antenna (위성 반사경 안테나 변형으로 인한 초점영역의 전자장 분포에 관한 연구)

  • Yi Sang-Hoi
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.36-47
    • /
    • 1995
  • The main purpose of this paper is to determine a new focal point and field distribution due to the shape deformation of reflector antenna by numerical method such as geometrical optics and the aperture field method. It is shown the 4 types deformations to be added into original shape of parabola antenna and offset antenna: linear, quadratic, cubic and hybrid distortion. These results can be applied to deformed reflector antenna in order to fit a focal point and radiation pattern.

  • PDF

Non-Contacted Strain Analysis by Dual-beam Shearography (변형 해석을 위한 Dual-beam Shearography)

  • 김경석;정성욱;장호섭;최태호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.400-403
    • /
    • 2002
  • This paper presents a shearographic technique for measuring in-plane strains. During the measurement, the test object is illuminated alternately with two laser beams, symmetrically with respect to the viewing direction. Employing a phase shift technique, the phase distributions due to object deformation for each beam are obtained separately. The difference of the two phase distributions depicts the derivative of in-plane surface displacements. The technique is equivalent to a system of many strain gages.

  • PDF