• Title/Summary/Keyword: Deformation Hardening

Search Result 392, Processing Time 0.03 seconds

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.

Effect of Strain Path on Lattice Strain Evolution during Monotonic and Cyclic Tension of Magnesium Alloy

  • Yoon, Cheol;Gharghouri, Michael A.;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.221-225
    • /
    • 2015
  • In-situ neutron diffraction has been employed to examine the effect of strain path on lattice strain evolution during monotonic and cyclic tension in an extruded Mg-8.5wt.%Al alloy. In the cyclic tension test, the maximum applied stress increased with cycle number. Lattice strain data were acquired for three grain orientations, characterized by the plane normal to the stress axis. The lattice strain in the hard {10.0} orientation, which is unfavorably oriented for both basal slip and {10.2} extension twinning, evolved linearly throughout both tests during loading and unloading. The {00.2} orientation exhibited significant relaxation associated with {10.2} extension twinning. Coupled with a linear lattice strain unloading behavior, this relaxation led to increasingly compressive residual strains in the {00.2} orientation with increasing cycle number. The {10.1} orientation is favorably oriented for basal slip, and thus showed a soft grain behavior. Microyielding occurred in the monotonic tension test and in all cycles of the cyclic test at an applied stress of ~50 MPa, indicating that strain hardening in this orientation was not completely stable from one cycle to the next. The lattice strain unloading behavior was linear in the {10.1} orientation, leading to a compressive residual strain after every cycle, which, however, did not increase systematically from one cycle to the next as in the {00.2} orientation.

Application of steel equivalent constitutive model for predicting seismic behavior of steel frame

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1055-1075
    • /
    • 2015
  • In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

Tearing of metallic sandwich panels subjected to air shock loading

  • Zhu, Feng;Lu, Guoxing;Ruan, Dong;Shu, Dong-Wei
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.351-370
    • /
    • 2009
  • This paper presents a computational study for the structural response of blast loaded metallic sandwich panels, with the emphasis placed on their failure behaviours. The fully-clamped panels are square, and the honeycomb core and skins are made of the same aluminium alloy. A material model considering strain and strain rate hardening effects is used and the blast load is idealised as either a uniform or localised pressure over a short duration. The deformation/failure procedure and modes of the sandwich panels are identified and analysed. In the uniform loading condition, the effect of core density and face-sheets thicknesses is analysed. Likewise, the influence of pulse shape on the failure modes is investigated by deriving a pressure-impulse (P-I) diagram. For localised loading, a comparative study is carried out to assess the blast resistant behaviours of three types of structures: sandwich panel with honeycomb core, two face-sheets with air core and monolithic plate, in terms of their permanent deflections and damage degrees. The finding of this research provides a valuable insight into the engineering design of sandwich constructions against air blast loads.

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (I) - Monotonic and Cyclic Behavior - (냉간 가공된 316L 스테인리스강의 저주기 피로 거동에 미치는 온도의 영향 (I) - 인장 및 반복 거동 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.333-342
    • /
    • 2004
  • Tensile and low cycle fatigue (LCF) tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650$^{\circ}C$. At all test temperatures, cold worked material showed the tendency of higher strength and lower ductility compared with those of solution treated material. The embrittlement of material occurred in the temperature region from 300$^{\circ}C$ to 600$^{\circ}C$ due to dynamic strain aging. Following initial cyclic hardening for a few cycles, cycling softening was observed to dominate until failure occurred during LCF deformation, and the cyclic softening behavior strongly depended on temperature and strain amplitude. Non-Masing behavior was observed at all test temperatures and hysteresis energy curve method was employed to describe the stress-strain hysteresis loops at half$.$life. The prediction shows a good agreement with the experimental results.

p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities (재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

Strain Analysis in the Slipline Field for Strip Drawing (판재인발 슬립라인장의 변형해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.660-669
    • /
    • 1989
  • The strain distribution in a wide strip drawn through a wedge-shaped die is obtained from the numerical integration of strain increments along the flow path of material points in the slipline field for a non-hardening material under the plane strain condition. It is shown that the strain in the surface layer increases with friction and that the strain at the mid-plane is a function of area reduction only. The redundant deformation factor, obtained from the average strain in a drawn strip, increases with friction. For the workability analysis of a strip drawing process, the strain states along with hydrostatic stresses are needed for the evaluation of a damage function based on the hole-growth mechanism of ductile fracture. The critical maximum of the damage function is assumed to be a material constant. As a result, mid-plane cracking is likely to occur in a process at a small reduction, with a large die angle, and in poor lubrication. Distortions of an initially transverse line are also calculated.

Mechanical Properties and Texture after Thermomechanical Treatment of Al/Al2O3 Composite Fabricated by Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 Al/Al2O3 복합재료의 가공열처리후의 기계적 성질 및 집합조직)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.235-240
    • /
    • 2003
  • The $Al/Al_2O_3$ composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50$0^{\circ}C$, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30$0^{\circ}C$. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20$0^{\circ}C$. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.

Study of the Effect of Loading Path on the Strain and Mechanical Properties of Aluminum with Flat and Groove Rolling Experiment (순수 알루미늄의 판재압연 및 공형압연시 가공경로에 따른 변형분포와 기계적 성질의 예측)

  • Kim, S.I.;Byon, S.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.420-428
    • /
    • 2008
  • The effect of loading path changes on the strain and mechanical properties of a commercial pure aluminum was studied using flat rolling and groove rolling. Material during flat rolling undergoes a continuous monotonic compressive loading, while one during groove rolling experiences a series of cross compressive loading. Four-pass flat rolling and groove rolling experiment are designed such that the aluminum undergoes the same amount of the strain at each pass. The rolling experiment was performed at room temperatures. Specimens for tensile test are fabricated from the plate and bar rolled. In addition, the strain distribution for the plate and bar cold rolled specimens is also calculated by finite element method. The results reveal that differences of loading path attributed by monotonic loading(flat rolling) and cross loading(groove rolling) significantly influence the mechanical properties such as yield stress, ultimate tensile stress, strain hardening and elongation. It is clear that the different loading path can give raise to change the deformation history, although it is deformed with same amount of strain for same material.

Mechanical Behavior and Physical Properties of Zr-Ti-Cu-Ni-Be Amorphous and Partially Crystallized Alloy Extracted from a Commercial Golf Club Head (Zr-Ti-Cu-Ni-Be 합금으로 제조된 상용 골프클럽헤드의 부위별 물리적 특성 및 기계적 거동)

  • Choi, Young-Chul;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.697-704
    • /
    • 2005
  • The deformation behavior of a bulk amorphous and crystallized amorphous $Zr_{22.5}Ti_{14}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy extracted from a commercial golf club head was characterized at room temperature ana $300^{\circ}C$. At room temperature, amorphous specimens revealed higher yield stress and ductility than partially crystallized alloy specimens. Amorphous alloy displayed some plasticity before fracture, which resulted from strain hardening and repeated crack initiation and propagation. The fracture is mainly localized on one major shear band, and the compressive fracture angle of the amorphous specimen between the stress axis and the fracture plane was about $40^{\circ}$ Scanning electron microscope observations revealed mainly a vein-like structure in the amorphous alloy But the fracture surface of partially crystallized amorphous alloy consisted of vein-like and featureless fracture structure. The partially crystallized alloy extracted from the thick part of the club fractured in the elastic region, at a much lower stress level than the amorphous, suggesting that relatively coarse crystal particles formed during cooling cause the brittle fracture.