• Title/Summary/Keyword: Deformation Estimation

Search Result 384, Processing Time 0.023 seconds

Development of Wire Temperature Prediction Method in a Continuous Dry Wire Drawing Process Using the High Carbon Steel (고탄소강의 연속 건식 신선 공정에서 선재의 온도 예측 기법 개발)

  • Kim, Yeong-Sik;Kim, Dong-Hwan;Kim, Byeong-Min;Kim, Min-An;Park, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.330-337
    • /
    • 2001
  • Wire drawing process of the high carbon steel with a high speed is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In multi-stage drawing process, temperature rise in each pass affects the mechanical properties of final product such as bend, twist and tensile strength. Also, this temperature rise during the deformation is the reason that the wire in drawing process is broken by the embrittlement due to rapid strain aging effect. This paper presents the estimation of the wire temperature for the multi-stage wire drawing process. Using the proposed calculation method of wire temperature, temperature rise at deformation zone as well as temperature drop in block considering the heat transfer between the block and wire were calculated. As these calculated wire temperatures were applied to the real industrial fields, it was known that the calculated results were in a good agreement with the measured wire temperature.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.

Reliability Analysis of the Three-Dimensional Deformation Measurement by Terrestrial Photogrammetry (지상사진에 의한 삼차원변형측량의 신뢰성 분석(기이))

  • 유복모;유환희;이용희
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1988
  • In the three dimensional deformation analysis by terrestrial photographs, iterative reweighted similarity transformation method is used for more accurate displacement computation. Also, Bayesian Inference method is used in the detection of unstable points and the analytical method for displacement patterns analysis is proposed in this study. In results, the accuracy of displacement estimation was improved by applying the weights of least absolute method ($\Sigma$|d|⇒min) and more accurate detection of displaced points could be achieved by Bayesian Inference. The analytical method in the patterns of displacement proposed in this study could be adapted to the movement analysis of objects wholly or partly.

  • PDF

A LOCALIZED GLOBAL DEFORMATION MODEL TO TRACK MYOCARDIAL MOTION USING ECHOCARDIOGRAPHY

  • Ahn, Chi Young
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.181-192
    • /
    • 2014
  • In this paper, we propose a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frame from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropout or shadowing phenomena of cardiac walls. The proposed method deals with this shape distortion problem and reflects the motion realistic LV shape by applying global deformation modeled as affine transform partitively to the contour. We partition the tracking points on the contour into a few groups and determine each affine transform governing the motion of the partitioned contour points. To compute the coefficients of each affine transform, we use the least squares method with equality constraints that are given by the relationship between the coefficients and a few contour points showing good tracking results. Many real experiments show that the proposed method supports better performance than existing methods.

A Study on the Fatigue Behavior of Resistance Spot Welded Part of 5182 Aluminum Aloy Sheet (5182 Al합금판의 전기저항 점용접부 피로거동에 관한 연구)

  • 신현일;박용석;강성수
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.84-92
    • /
    • 1998
  • On this study, the variations of hardness and microstructure were observed at he spot-welded part of 5182 alminum alloy sheets with thickness of 1.2 mm. The hardness of spot-welded part of aluminum alloy indicated the lowest value at nugget center. Also, the position where fatigue crack exists was investigated by surveying microstructure of the spot-welded sections. Mean load-deformation diagrams were obtained from static tensile test. Fracture was occurred completely within 5 mm after transforming elastic into plastic area. Fatigue test was stopped when the specimens of fatigue test had the final displacement of 0.2mm and measured fatigue bending angle and crack length. This study utilized them, investigated the relations between fatigue bending angle and fatigue crack length and made a estimation of the fatigue fracture life of resistance spot welded part of 5182 aluminum alloy sheet. The relative equation o fatigue crack length and fatigue failure life can be represented by {TEX}$L_{C}${/TEX}=α{TEX}$N_{f}^ {β}${/TEX}.

  • PDF

Unscented Kalman Snake for 3D Vessel Tracking

  • Lee, Sang-Hoon;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 2015
  • Purpose In this paper, we propose a robust 3D vessel tracking algorithm by utilizing an active contour model and unscented Kalman filter which are the two representative algorithms on segmentation and tracking. Materials and Methods The proposed algorithm firstly accepts user input to produce an initial estimate of vessel boundary segmentation. On each Computed Tomography Angiography (CTA) slice, the active contour is applied to segment the vessel boundary. After that, the estimation process of the unscented Kalman filter is applied to track the vessel boundary of the current slice to estimate the inter-slice vessel position translation and shape deformation. Finally both active contour and unscented Kalman filter are inter-operated for vessel segmentation of the next slice. Results The arbitrarily shaped blood vessel boundary on each slice is segmented by using the active contour model, and the Kalman filter is employed to track the translation and shape deformation between CTA slices. The proposed algorithm is applied to the 3D visualization of chest CTA images using graphics hardware. Conclusion Through this algorithm, more opportunities, giving quick and brief diagnosis, could be provided for the radiologist before detailed diagnosis using 2D CTA slices, Also, for the surgeon, the algorithm could be used for surgical planning, simulation, navigation and rehearsal, and is expected to be applied to highly valuable applications for more accurate 3D vessel tracking and rendering.

Flexural ductility of reinforced and prestressed concrete sections with corrugated steel webs

  • Chen, X.C.;Au, F.T.K.;Bai, Z.Z.;Li, Z.H.;Jiang, R.J.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.625-642
    • /
    • 2015
  • Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical method which uses the actual stress-strain curves of the materials and considers the path-dependence of materials. In view of the different behaviour of components and the large shear deformation of corrugated steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no longer be valid. The interaction between shear deformation and local bending of flanges may cause additional stress in flanges, which is considered in this study. The numerical results obtained are compared with experimental results for verification. A parametric study is undertaken to clarify the effects of various parameters on ductility, deformability and strength.

New procedure for determining equivalent deep-water wave height and design wave heights under irregular wave conditions

  • Kang, Haneul;Chun, Insik;Oh, Byungcheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.168-177
    • /
    • 2020
  • Many coastal engineering designs utilize empirical formulas containing the Equivalent Deep-water Wave Height (EDWH), which is normally given a priori. However, no studies have explicitly discussed a method for determining the EDWH and the resulting design wave heights (DEWH) under irregular wave conditions. Unfortunately, it has been the case in many design practices that the EDWH is incorrectly estimated by dividing the Shallow-water Wave Height (SWH) at the structural position with its corresponding shoaling coefficient of regular wave. The present study reexamines the relationship between the Shallow-water Wave Height (SWH) at the structural position and its corresponding EDWH. Then, a new procedure is proposed to facilitate the correct estimation of EDWH. In this procedure, the EDWH and DEWH are determined differently according to the wave propagation model used to estimate the SWH. For this, Goda's original method for nonlinear irregular wave deformation is extended to produce values for linear shoaling. Finally, exemplary calculations are performed to assess the possible errors caused by a misuse of the wave height calculation procedure. The relative errors with respect to the correct values could exceed 20%, potentially leading to a significant under-design of coastal or harbor structures in some cases.

Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

  • Alile, Mohsen Rezvani;Foyouzat, Mohammad Ali;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for plates of higher thicknesses. Moreover, it is shown that CPT is unable to properly capture the variation of the plate thickness, thereby diminishing the accuracy as the thickness increases. The outcomes also indicate that the presence of a foundation contributes more to the dynamic response of thin plates in comparison to moderately thick plates. Furthermore, the findings suggest that the performance of the moving force approach for a moderately thick plate, in contrast to a thin plate, appears to be acceptable and it even provides a much better estimation in the presence of a foundation.

Numerical Model for the Estimation of Ultimate Load Capacity of CFT Columns Considering Time-dependent Behavior (시간 의존적 거동을 고려한 CFT 기둥의 극한 하중 계산을 위한 수치 해석 모델 제안)

  • Seong Hun Kim;Hyo-Gyoung Kwak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.25-31
    • /
    • 2024
  • This paper introduces a numerical analysis model capable of evaluating CFT (Concrete-Filled Tube) columns across all time stages, incorporating creep behavior analysis and inelastic analysis to account for time-dependent behavior. The proposed model is compared with experimental results, revealing that the numerical model presented in this paper demonstrates more accurate trends than existing design criteria. Following verification, a numerical analysis is conducted for each slenderness ratio, determining the ultimate load capacity and examining the short-term and long-term sustained load behavior of the overall CFT column members.