• 제목/요약/키워드: Deformation Estimation

검색결과 384건 처리시간 0.023초

Ground Deformation Evaluation during Vertical Shaft Construction through Digital Image Analysis

  • Woo, Sang-Kyun;Woo, Sang Inn;Kim, Joonyoung;Chu, Inyeop
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.285-293
    • /
    • 2021
  • The construction of underground structures such as power supply lines, communication lines, utility tunnels has significantly increased worldwide for improving urban aesthetics ensuring citizen safety, and efficient use of underground space. Those underground structures are usually constructed along with vertical cylindrical shafts to facilitate their construction and maintenance. When constructing a vertical shaft through the open-cut method, the walls are mostly designed to be flexible, allowing a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the displacement of the surrounding ground. This study simulated stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model experiment. One quadrant of the axisymmetric vertical shaft and the ground were modeled, and ground excavation was simulated by shrinking the vertical shaft. The deformation occurring on the entire ground during the excavation was continuously evaluated through digital image analysis. The digital image analysis evaluated complex ground deformation which varied with wall displacement, distance from the wall, and ground depth. When the ground deformation data accumulate through the method used in this study, they can be used for developing shaft wall models in future for analyzing the earth pressure acting on them.

모드해석과 관측기에 의한 볼스크류 온도분포의 실시간 예측 (Real Time Estimation of Temperature Distribution of a Ball Screw System Using Modal Analysis and Observer)

  • 안중용;김태훈;정성종
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.145-152
    • /
    • 2001
  • Thermal deformation of a machine tool structure can be evaluated from the analysis of the whole temperature field. However, it is extremely inefficient and impossible to know the whole temperature field by measuring temperatures at every point. So, the temperature estimator is required, which can predict the whole temperature field from the temperatures of just a few points. In this paper, a 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. And then the state observer is designed to estimate the intensity of heat source and the whole temperature field in real time. The reliability of the estimator is verified by making comparison between solutions obtained from the proposed method and the exact solutions of examples. The proposed method is applied to the estimation of temperature distribution in a ball screw system.

광범위 크리프 조건에 대한 관통균열 배관의 크리프 파괴역학 해석 (Creep Fracture Mechanics Analysis for Through-Wall Cracked Pipes under Widespread Creep Condition)

  • 허남수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.890-897
    • /
    • 2003
  • This paper compares engineering estimation schemes of C* and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C* and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C* and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C* and COD rate than the reference stress method.

Deformation estimation of truss bridges using two-stage optimization from cameras

  • Jau-Yu Chou;Chia-Ming Chang
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.409-419
    • /
    • 2023
  • Structural integrity can be accessed from dynamic deformations of structures. Moreover, dynamic deformations can be acquired from non-contact sensors such as video cameras. Kanade-Lucas-Tomasi (KLT) algorithm is one of the commonly used methods for motion tracking. However, averaging throughout the extracted features would induce bias in the measurement. In addition, pixel-wise measurements can be converted to physical units through camera intrinsic. Still, the depth information is unreachable without prior knowledge of the space information. The assigned homogeneous coordinates would then mismatch manually selected feature points, resulting in measurement errors during coordinate transformation. In this study, a two-stage optimization method for video-based measurements is proposed. The manually selected feature points are first optimized by minimizing the errors compared with the homogeneous coordinate. Then, the optimized points are utilized for the KLT algorithm to extract displacements through inverse projection. Two additional criteria are employed to eliminate outliers from KLT, resulting in more reliable displacement responses. The second-stage optimization subsequently fine-tunes the geometry of the selected coordinates. The optimization process also considers the number of interpolation points at different depths of an image to reduce the effect of out-of-plane motions. As a result, the proposed method is numerically investigated by using a truss bridge as a physics-based graphic model (PBGM) to extract high-accuracy displacements from recorded videos under various capturing angles and structural conditions.

제주도 북동부 및 북서부 현무암반의 변형계수 추정 (Estimation of Deformation Modulus of Basaltic Rock Masses in Northeastern and Northwestern Jeju Island)

  • 양순보;부상필
    • 한국지반공학회논문집
    • /
    • 제35권1호
    • /
    • pp.5-15
    • /
    • 2019
  • 본 연구에서는 제주도 북동부 육 해상 및 북서부 육상에 위치한 현무암반에 대한 공내재하시험으로부터 계측된 변형계수와 RQD 및 RMR의 관계를 각각 살펴보았으며, 기존의 경험식들로부터 추정된 변형계수 값과 비교 분석하였다. 뿐만 아니라, 속도검층시험을 통하여 산정된 탄성파 속도비 및 동적 포아송 비와 변형계수의 관계에 대해서도 각각 살펴보았다. 그 결과, 다공성 구조 및 층상 구조가 특징인 제주도 현무암반의 경우, RQD 값만을 이용한 암반등급의 결정, 변형계수 계측방법의 선정 및 변형계수의 추정은 부적절하며, 최소한 RMR을 통하여 암반등급을 결정하고, 변형계수를 추정하는 것이 바람직하다는 것을 알 수 있었다. RMR을 이용한 기존의 변형계수 추정식은 제주도 현무암반의 변형계수에 비해 큰 값을 예측하는 경향을 보였으며, 탄성파 속도비 및 동적 포아송 비와 변형계수는 서로 정성적인 특성이 일치하는 관계에 있었다. 그리고, 적절한 제주도 현무암반의 변형계수를 추정하기 위한 RMR과 탄성파 속도비를 이용한 변형계수 추정식을 각각 제시하였다.

CPT를 이용한 부산점토의 압축특성에 관한 연구 (Estimation of compressibility for Busan clay by CPT)

  • 홍성진;이문주;심성현;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.320-325
    • /
    • 2009
  • The constrained modulus, representative property to evaluate compressibility of soil, is needed to estimate the settlement of ground structure. A series of lab and field cone penetration tests for clayey soil of Busan new-port and Noksan industrial area were conducted to evaluate the estimation method of constrained modulus. Since CPT generates large deformation of ground, it is difficult to correlate the cone resistance with the constrained modulus. Therefore, appropriate correlation between them is essential to estimate the constrained modulus based on CPT results. The test results show that the ratio of the constrained modulus to the cone resistance is inversely proportional with plasticity index. Based on this result, the estimation method of constrained modulus for Busan clay is suggested.

  • PDF

장축 실린더의 열변형 최소화를 위한 차열관 효과 해석 및 실험 연구 (An Analytical and Experimental Study on the Thermal Shroud Effect to Minimize Thermal Deformation of a High L/D Ratio Cylinder)

  • 안상태
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.54-63
    • /
    • 2007
  • A barrel is a high length-to-diameter ratio cylinder that is influenced by environmental factors such as sunlight, precipitation, wind and clouds. Cross-barrel temperature differences caused by uneven heating or cooling lead to thermal deformation that degrades accuracy. Therefore, a barrel is covered by thermal shrouds to minimize the type of thermal deformation, "fall-of-shot". In this paper, an analytical and experimental study is presented to design the thermal shrouds for a gun barrel and to evaluate the thermal shroud effect. First, an analytical study on the thermal shroud effect to minimize thermal deformation of a gun barrel by sunlight and wind is performed. The coupled analysis of thermal fluid dynamics of the air flow between a barrel and thermal shrouds and thermal stresses of a barrel Is performed to clarify both the thermal shroud effect and the drift in gun muzzle orientation by thermal deformation. Second, experiments are carried out to test and evaluate the thermal shroud effect on the performance of a gun barrel. The drift in gun muzzle orientation against the solar radiation is confirmed by the experiments, and the results well agree with the analytical estimation. Third, three principal design factors that are presumed to have an effect on the performance of the thermal shrouds are also analyzed; sorts of shroud materials, wall-thickness of thermal shrouds, and distance of the gap between a barrel and thermal shrouds.

조건부 합성 기법을 이용한 굴착 배면 침하량 분포의 정밀 산정 (Accurate Estimation of Settlement Profile Behind Excavation Using Conditional Merging Technique)

  • 김태식;정영훈
    • 한국지반환경공학회 논문집
    • /
    • 제17권8호
    • /
    • pp.39-44
    • /
    • 2016
  • 도심지와 같이 공사 현장에 인접 구조물이 많은 경우, 지반 구조물의 안정성 확보와 더불어 지반의 변형 역시 엄격하게 관리해야 한다. 따라서 공사 중 현장에서 발생하는 지반의 침하를 정확하게 계측하는 것은 매우 중요하다. 지반의 침하는 침하계를 이용하여 계측하는 것이 일반적이나, 최근 전자기술의 발달로 3차원 스캔이 가능한 장치들을 지반 침하 계측에 사용하고 있다. 그러나 이 3차원 스캔장치의 경우 지반 침하의 전체적인 양상을 평가하기는 용이하나 직접 침하를 측정하지 않아 정밀도에 있어서 한계가 있다. 또한, 침하계의 경우 침하계가 설치된 지점에서만 침하값을 측정하기 때문에 전체적인 침하의 양상을 평가하는 데는 한계가 있다. 본 논문에서는 침하계가 측정한 값과 스캐너가 측정한 값을 합성하는 조건부 합성 기법에 대해 연구하였다. 가상의 침하양상과 이를 바탕으로 가상의 스캔한 침하 양상을 생성시켜 연구를 진행하였다. 조건부 합성을 통해 침하 양상의 오차를 획기적으로 줄일 수 있는 것으로 나타났다.

잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석 (Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength)

  • 강충길;서영호
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF

배관에 존재하는 원주방향 표면균열에 대한 파괴거동 해석 (I) -J-적분 예측식 - (Fracture Behavior Estimation for Circumferential Surface Cracked Pipes (I) - J-Integral Estimation Solution -)

  • 김진수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.131-138
    • /
    • 2002
  • This paper provides the fully plastic J solutions for circumferential cracked pipes with inner, semi- elliptical surface cracks, subject to internal pressure and global bending. Solutions are given in the form of two different approaches, the GEF/EPRl approach and the reference stress approach. For the GE/EPRl approach, the plastic influence functions for fully plastic J are tabulated based on extensive 3-D FE calculations using the Ramberg-Osgood (R-O) materials, covering a wide range of pipe and crack geometries. The developed GEf/EPRl-type fully plastic J estimation equations are then re-formulated using the concept of the reference stress approach for wider applications. Based on the FE results, optimized reference load solutions for the definition of the reference stress are found for internal pressure and for global bending. Advantages of the reference stress based approach over the GE/EPRl-type approach are fully discussed. Validation of the proposed reference stress based J estimation equations will be given in Part II, based on 3-D elastic-plastic or elastic creep FE results using typical tensile properties of stainless steels and generalized creep- deformation behaviours.