• Title/Summary/Keyword: Deformation Creep

Search Result 379, Processing Time 0.026 seconds

Three-Dimensional Crystallizing $\pi$-Bondings and Creep of Metals

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.238-251
    • /
    • 1995
  • Creep of metals has been explained conventionally by dislocation climb and grain boundary sliding indiffusion controlled process. The reorienations of the atoms in the grain by three dimensional crystallizing $\pi$-bondings are visualized as grain rotatins during slow deformation, fold formatin at triple point, increased crevice dspace between grains. grain boundary sliding, grain boundary micration and formation of cracks at the grain boundaries . And also the rupture time and average creep strain rate are explained by the three-dimensional crystallizing $\pi$- bondings and they can be determined by uniaxial tensile test.

  • PDF

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (I) - Boiler Superheater Tube - (SP-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(I) - 보일러 과열기 튜브 -)

  • Baek, Seung-Se;Na, Seong-Hun;Na, Ui-Gyun;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1995-2001
    • /
    • 2001
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen(10${\times}$10${\times}$0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-lMo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600$^{\circ}C$. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decreases with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation or SP-Creep rate for 2.25Cr-lMo steel is suggested. and a good agreement between experimental and calculated data has been found.

A Study on Applicability of SP Creep Testing for Measurement of Creep Properties of Zr-2.5Nb Alloy (Zr-2.5Nb 합금의 크리프 물성 측정을 위한 SP 크리프 시험의 적용성에 대한 연구)

  • Park, Tae-Gyu;Ma, Young-Wha;Jeong, Ill-Seok;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2003
  • The pressure tubes made of cold-worked Zr-2.5Nb alloy are subjected to creep deformation during service period resulting in changes to their geometry such as longitudinal elongation, diameter increase and sagging. To evaluate integrity of them, information on the material creep property of the serviced tubes is essential. As one of the methods with which the creep property is directly measured from the serviced components, small punch(SP) creep testing has been considered as a substitute for the conventional uniaxial creep testing. In this study, applicability of the SP creep testing to Zr-2.5Nb pressure tube alloy was studied particularly by measuring the power law creep constants, A, n. The SP creep test has been successfully applied fur other high temperature materials which have isotropic behavior. Since the Zr-2.5Nb alloy has anisotropic property, applicability of the SP creep testing can be limited. Uniaxial creep tests and small punch creep tests were conducted with Zr-2.5Nb pressure tube alloy along with finite element analyses. Creep constants obtained by each test method are compared. It was argued that the SP creep test result gave results reflecting material properties of both directions. But the equations derived in the previous study for isotropic materials need to be modified. Discussions were made fur future research directions for application of the SP creep testing to Zr-2.5Nb tube alloy.

Critical Compressive Strain of Concrete under a Long-Term Deformation Effect Part I. Experiments

  • Nghia, Tran Tuan;Chu, In-Yeop;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This paper focuses on the effect of creep on the critical compressive strain (CCS) of concrete. The strain of concrete corresponding to the peak compressive stress is crucial in the selection of the ultimate yield strength of the reinforcing bar used in reinforced concrete columns. Among the various influencing factors, such as the creep, shrinkage, loading rate and confinement, the effect of creep and shrinkage is the most significant. So far, investigations into how these factors can affect the CCS of concrete have been rare. Therefore, to investigate the effect of creep and shrinkage on CCS, an experimental (part I) and a parametric study (part II) were conducted, as presented in these papers (part I considers creep effect, part II considers effect of creep and shrinkage). In part I, experiments pertaining to the loading age, loading rate, loading duration and loading and creep levels were conducted to study the effect of these variables on the CCS of concrete. It was found that the effects of the loading rate, loading age, and level and duration on the CCS of concrete were negligible. However, it is very important to consider the effect of creep.

Consolidation deformation of Baghmisheh marls of Tabriz, Iran

  • Jalali-Milani, Shahrokh;Asghari-Kaljahi, Ebrahim;Barzegari, Ghodrat;Hajialilue-Bonab, Masoud
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.561-577
    • /
    • 2017
  • Vast parts of the east of Tabriz city have been covered by Baghmisheh formation marls. These marls can be classified into three types based on their color as identified in yellow, green, and gray marls. Many high-rise buildings and other projects were founded and now is constructing on these marls. Baghmisheh formation marls are classified as stiff soil to very weak rock, therefore they undergo considerable consolidation settlement under foundation loads. This study presents the physical properties and consolidation behavior of these marls. According to the XRD tests, major clay minerals of marls are Illite, Kaolinite, Montmorillonite and Chloride. Uniaxial compressive strength are 100-250, 300-480 and 500-560 kPa for yellow, green and gray marls, respectively. Consolidation and creep behavior of Baghmisheh marls investigated by using of one dimensional consolidation apparatus under stress level up to 5 MPa. The results indicate that yellow marls have high compressibility, settlement and deformation modules. Green marls have an intermediate compressibility and settlement and while gray marls have low compressibility and settlement and from the foundation point of view have high stability. According to the creep test results, all types of marls have not been entered to progressive creep phase up to pressure 5 MPa.

Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress (온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.496-500
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behavior of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress (온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.288-292
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behaviour of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

Conformational changes of short, discrete Rouse chain during creep and recovery processes

  • Watanabe, Hiroshi;Inoue, Tadashi
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.91-99
    • /
    • 2004
  • For the Rouse chain composed of infinite number of beads (continuous limit), conformational changes during the creep and creep recovery processes was recently analyzed to reveal the interplay among all Rouse eigenmodes under the constant stress condition (Watanabe and Inoue, Rheol. Acta, 2004). For completeness of the analysis of the Rouse model, this paper analyzes the conformational changes of the discrete Rouse chain having a finite number of beads (N = 3 and 4). The analysis demonstrates that the chain of finite N exhibits the affine deformation on imposition/removal of the stress and this deformation gives the instantaneous component of the recoverable compliance, $J_{R}$(0) = 1/(N-l)v $k_{B}$T with v and $k_{B}$ being the chain number density and Boltzmann constant, respectively. (This component vanishes for N\longrightarrow$\infty$.) For N = 2, it is known that the chain has only one internal eigenmode so that the affinely deformed conformation at the onset of the creep process does not change with time t and $J_{R}$(t) coincides with $J_{R}$(0) at any t (no transient increase of $J_{R}$(t)). However, for N$\geq$3, the chain has N-l eigenmodes (N-l$\geq$2), and this coincidence vanishes. For this case, the chain conformation changes with t to the non-affine conformation under steady flow, and this change is governed by the interplay of the Rouse eigenmodes (under the constant stress condition). This conformational change gives the non-instantaneous increase of $J_{R}$(t) with t, as also noted in the continuous limit (N\longrightarrow$\infty$).X>).TEX>).X>).

Creep properties and damage model for salt rock under low-frequency cyclic loading

  • Wang, Jun-Bao;Liu, Xin-Rong;Liu, Xiao-Jun;Huang, Ming
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.569-587
    • /
    • 2014
  • Triaxial compression creep tests were performed on salt rock samples using cyclic confining pressure with a static axial pressure. The test results show that, up to a certain time, changes in the confining pressure have little influence on creep properties of salt rock, and the axial creep curve is smooth. After this point, the axial creep curve clearly fluctuates with the confining pressure, and is approximately a straight line both when the confining pressure decreases and when it increases within one cycle period. The slope of these lines differs: it is greater when the confining pressure decreases than when it increases. In accordance with rheology model theory, axial creep equations were deduced for Maxwell and Kelvin models under cyclic loading. These were combined to establish an axial creep equation for the Burgers model. We supposed that damage evolution follows an exponential law during creep process and replaced the apparent stress in creep equation for the Burgers model with the effective stress, the axial creep damage equation for the Burgers model was obtained. The model suitability was verified using creep test results for salt rock. The fitting curves are in excellent agreement with the test curves, so the proposed model can well reflect the creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the fluctuations in creep deformation and creep rate as the confining pressure increasing and decreasing under different cycle periods.