• 제목/요약/키워드: Deformation Capacity

검색결과 893건 처리시간 0.035초

방조제 축조에 따른 지반의 변형에 관한 실험연구 (An experimental study on the Ground deformation caused by sea-dike construction)

  • 김성필
    • 한국농공학회지
    • /
    • 제42권5호
    • /
    • pp.78-83
    • /
    • 2000
  • When a sea-dike is constructed on soft soils, it is much difficult to calculate ground deformation caused by forced displacements. In this study , a series of laboratory model tests have been performed to investigate the ground deformation under a constructed sea-dike on soft soils. Construction sequence of sea-dike embankment was assumed such as constructed by quarry first and followed by soils adjacent to quarry embankment. as test data and displacement in subsoils have been analyzed, it seems that deformation is caused by general shear failure. the shape of ground deformation caused by forced displacements was well defined be parabola . Upon comparing profiles and depth of forced displacement from the model test to those based on stress-baring capacity method commonly used, it has been found that deformation prediction using stress-bearing capacity method was not exact at the edge of loading.

  • PDF

Shear strength analyses of internal diaphragm connections to CFT columns

  • Kang, Liping;Leon, Roberto T.;Lu, Xilin
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1083-1101
    • /
    • 2015
  • Previous theoretical equations for the shear capacity of steel beam to concrete filled steel tube (CFT) column connections vary in the assumptions for the shear deformation mechanisms and adopt different equations for calculating shear strength of each component (steel tube webs, steel tube flanges, diaphragms, and concrete etc.); thus result in different equations for calculating shear strength of the joint. Besides, shear force-deformation relations of the joint, needed for estimating building drift, are not well developed at the present. This paper compares previously proposed equations for joint shear capacity, discusses the shear deformation mechanism of the joint, and suggests recommendations for obtaining more accurate predictions. Finite element analyses of internal diaphragm connections to CFT columns were carried out in ABAQUS. ABAQUS results and theoretical estimations of the shear capacities were then used to calibrate rotational springs in joint elements in OpenSEES simulating the shear deformation behavior of the joint. The ABAQUS and OpenSEES results were validated with experimental results available. Results show that: (1) shear deformation of the steel tube dominates the deformation of the joint; while the thickness of the diaphragms has a negligible effect; (2) in OpenSEES simulation, the joint behavior is highly dependent on the yielding strength given to the rotational spring; and (3) axial force ratio has a significant effect on the joint deformation of the specimen analyzed. Finally, modified joint shear force-deformation relations are proposed based on previous theory.

DCVD 배수재의 성능평가 (A Perfomance Evaluation of the Deformation-Compatible Vertical Drain)

  • 송석규;천윤철;심재범;심성현;김영욱;이석원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.692-701
    • /
    • 2009
  • The use of vertical drain method to improve the soft soil ground has been continuously increased in Korea such as Busan New Port, Saemangeum reclamation project and so on in Korea. Especially PBD(Plastic Board Drain), one of the vertical drain, has been widely used due to the economic feasibility, construction compatibility and quality control. However in case of using PBD, discharge capacity reduction caused by creep deformation of the PBD filter, bending, kinking and so on can be occurred. Therefore the purpose of this study is to solve these problems by developing Deformation-Compatible Vertical Drain, DCVD which allows to deform with consolidation settlement without bending and kinking of vertical drain. In order to investigate the performance of DCVD developed in this study, discharge capacity test, centrifuge model test and complex discharge capacity test for both PBD and DCVD are performed and the results are compared.

  • PDF

Fe-26Mn-2Al 합금의 진동 감쇠능에 미치는 결정립 크기의 영향 (The Effect of grain size on the damping capacity of Fe-26Mn-2Al alloy)

  • 강창룡;엄정호;김효종;성장현
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.115-120
    • /
    • 2007
  • The effect of grain size on the damping capacity of Fe-26Mn-2Al alloy studied in this paper has been investigated after changing the microstructure by cold rolling and changing grain size. Micro structures in Fe-26Mn-2Al at room temperature consist of a large quantity of austenite and a small quantity of ${\varepsilon}\;and\;{\alpha}'$ martensite. And ${\varepsilon}\;and\;{\alpha}'$ martensite was increased by increasing the degree of cold rolling. The content of deformation induced martensite was increased with increasing the degree of cold rolling. Damping capacity was linearly increased with increasing ${\varepsilon}$ martensite content, which suggests that stacking faults and ${\varepsilon}$ martensite variant boundaries are the principle damping sources. With increasing the grain size in Fe-26Mn-2Al alloy, the damping capacity was increased due to increasing the volume fraction of ${\varepsilon}$ martensite by decrement in stability of austenite phase. With decreasing the grain size, the content of deformation induced martensite was decreased and the damping capacity was decreased.

  • PDF

전단벽의 단부보강효과에 따른 변형능력의 평가 (Effect of Edge Confinement on Deformation Capacity in the Isolated R/C Structural Walls)

  • 이희동;한상환;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.525-528
    • /
    • 1998
  • This paper reports on tests of reinforced concrete shear walls for wall-type apartment structure under axial loads and the cyclic reversal of lateral loads with different confinement of the boundary elements. Confinement of the extreme element by U-stirrups and tie hooks seems to be as effective as closed stirrups. The shear strength capacity seems not to be increased by the confinement but deformation capacity improved.

  • PDF

Effect of cumulative seismic damage to steel tube-reinforced concrete composite columns

  • Ji, Xiaodong;Zhang, Mingliang;Kang, Hongzhen;Qian, Jiaru;Hu, Hongsong
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.179-199
    • /
    • 2014
  • The steel tube-reinforced concrete (ST-RC) composite column is a novel type of composite column, consisting of a steel tube embedded in reinforced concrete. The objective of this paper is to investigate the effect of cumulative damage on the seismic behavior of ST-RC columns through experimental testing. Six large-scale ST-RC column specimens were subjected to high axial forces and cyclic lateral loading. The specimens included two groups, where Group I had a higher amount of transverse reinforcement than Group II. The test results indicate that all specimens failed in a flexural mode, characterized by buckling and yielding of longitudinal rebars, failure of transverse rebars, compressive crushing of concrete, and steel tube buckling at the base of the columns. The number of loading cycles was found to have minimal effect on the strength capacity of the specimens. The number of loading cycles had limited effect on the deformation capacity for the Group I specimens, while an obvious effect on the deformation capacity for the Group II specimens was observed. The Group I specimen showed significantly larger deformation and energy dissipation capacities than the corresponding Group II specimen, for the case where the lateral cyclic loads were repeated ten cycles at each drift level. The ultimate displacement of the Group I specimen was 25% larger than that of the Group II counterpart, and the cumulative energy dissipated by the former was 2.8 times that of the latter. Based on the test results, recommendations are made for the amount of transverse reinforcement required in seismic design of ST-RC columns for ensuring adequate deformation capacity.

Flexural Strength of RC Beam Strengthened by Partially De-bonded Near Surface-Mounted FRP Strip

  • Seo, Soo-yeon;Choi, Ki-bong;Kwon, Young-sun;Lee, Kang-seok
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.149-161
    • /
    • 2016
  • This paper presents an experimental work to study the flexural strength of reinforced concrete (RC) beams strengthened by partially de-bonded near surface-mounted (NSM) fiber reinforced polymer (FRP) strip with various de-bonded length. Especially, considering high anchorage capacity at end of a FRP strip, the effect of de-bonded region at a central part was investigated. In order to check the improvement of strength or deformation capacity when the bonded surface area only increased without changing the FRP area, single and triple lines of FRP were planned. In addition, the flexural strength of the RC member strengthened by a partially de-bonded NSM FRP strip was evaluated by using the existing researchers' strength equation to predict the flexural strength after retrofit. From the study, it was found that where de-bonded region exists in the central part of a flexural member, the deformation capacity of the member is expected to be improved, because FRP strain is not to be concentrated on the center but to be extended uniformly in the de-bonded region. Where NSM FRP strips are distributed in triple lines, a relatively high strength can be exerted due to the increase of bond strength in the anchorage.

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.

Proposals for flexural capacity prediction method of externally prestressed concrete beam

  • Yan, Wu-Tong;Chen, Liang-Jiang;Han, Bing;Wei, Feng;Xie, Hui-Bing;Yu, Jia-Ping
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.363-375
    • /
    • 2022
  • Flexural capacity prediction is a challenging problem for externally prestressed concrete beams (EPCBs) due to the unbonded phenomenon between the concrete beam and external tendons. Many prediction equations have been provided in previous research but typically ignored the differences in deformation mode between internal and external unbonded tendons. The availability of these equations for EPCBs is controversial due to the inconsistent deformation modes and ignored second-order effects. In this study, the deformation characteristics and collapse mechanism of EPCB are carefully considered, and the ultimate deflected shape curves are derived based on the simplified curvature distribution. With the compatible relation between external tendons and the concrete beam, the equations of tendon elongation and eccentricity loss at ultimate states are derived, and the geometric interpretation is clearly presented. Combined with the sectional equilibrium equations, a rational and simplified flexural capacity prediction method for EPCBs is proposed. The key parameter, plastic hinge length, is emphatically discussed and determined by the sensitivity analysis of 324 FE analysis results. With 94 collected laboratory-tested results, the effectiveness of the proposed method is confirmed, and comparisons with the previous formulas are made. The results show the better prediction accuracy of the proposed method for both stress increments and flexural capacity of EPCBs and the main reasons are discussed.

강봉댐퍼의 개수 및 Z 플레이트 사용에 따른 의존성 및 성능 평가 (Dependency and Performance Evaluation according to the Number of Steel Rod Dampers and the use of Z plates)

  • 이현호
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.51-58
    • /
    • 2023
  • In this study, the displacement dependence, strength, and energy dissipation capacity of the steel rod damper were evaluated. The test variables are the number of steel rod dampers and the lateral deformation prevention details. From test results, it was evaluated that the displacement dependence conditions in the structural design code were satisfied. The maximum strength and energy dissipation capacity increased linearly as the number of steel rod increased. In addition, the maximum strength and energy dissipation capacity were evaluated by more than 20 times increased by using of the lateral deformation prevention details.