• Title/Summary/Keyword: Deformation Boundary

Search Result 1,110, Processing Time 0.027 seconds

Deformation Mechanism Map for Creep and Superplastic Deformation in $YBa_2Cu_3O_{7-x}$ Ceramic Superconductors ($YBa_2Cu_3O_{7-x}$ 세라믹 초전도체의 크리프와 초소성변형에 대한 변형기관도)

  • 윤존도;초우예
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.718-724
    • /
    • 1996
  • Deformation mechanism map of Langdon-Mohammed type for YBa2Cu3O7-x superconducting ceramic was constructed by considering mechanisms of Nabarro-Herring Coble and powder-law creep and grain boundary sliding (GBS) with an accommodation by grain boundary diffusion. The map was found consistent with experi-mental results not only of the creep the also of the superplastic deformation. It showed the transition from interface reaction-controlled to the grain boundary diffusion-controlled GBS mechanism at about 1 ${\mu}{\textrm}{m}$ grain size and 100 MPa flow stress in agreement with the experimental results.

  • PDF

A Boundary Diffusion Creep Model for the Plastic Deformation of Grain Boundary Phase of Nanocrystalline Materials (나노재료 입계상의 소성변형에 대한 입계확산크립 모델)

  • 김형섭;오승탁;이재성
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.383-388
    • /
    • 2001
  • In describing the plastic deformation behaviour of ultrafine-grained materials, a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase, which is necessary for applying the phase mixture model to polycrystalline materials, is modelled as a diffusional flow of matter along the grain boundary. A constitutive equation for the boundary diffusion creep of the boundary phase was proposed, in which the strain rate is proportional to (stress/grain siz $e^{2}$). The upper limit of the stress of the boundary phase was set to equal to the strength to the amorphous phase. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase. Successful applications of the model compared with published experimental data are described.

  • PDF

A Boundary diffusion creep model of grain boundary phase of materials (재료결정립계상의 입계확산크립 모델)

  • 김형섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.192-195
    • /
    • 2000
  • In describing the plastic deformation behaviour of fine grained materials a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase which is necessary for applying the phase mixture model is modelled as a diffusional flow of matter though the grain boundary. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase.

  • PDF

An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory

  • Larbi, Latifa Ould;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.247-254
    • /
    • 2018
  • In this paper, a simple first-order shear deformation theory is presented for dynamic behavior of functionally graded beams. Unlike the existing first-order shear deformation theory, the present one contains only three unknowns and has strong similarities with the classical beam theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. Equations of motion and boundary conditions are derived from Hamilton's principle. Analytical solutions of simply supported FG beam are obtained and the results are compared with Euler-Bernoulli beam and the other shear deformation beam theory results. Comparison studies show that this new first-order shear deformation theory can achieve the same accuracy of the existing first-order shear deformation theory.

The Effect of Plastic Strain on the Superplastic Deformation Behavior (초소성변형특성에 미치는 소성변형랴의 영향)

  • 권용남;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.291-293
    • /
    • 1997
  • The effect of strain accumulation on the superplastic deformation behavior has been investigated through a series of load relaxation tests. The experimental results were analyzed using the recently proposed inelastic constitutive theory. The superplastic deformation of fine grained materials is confirmed to consist of grain boundary sliding and accommodating grain matrix deformation. However the flow behavior is changed with the plastic strain. It is believed that the microstructural changes such as grain growth and cavitation affect the superplastic deformation behaviors.

  • PDF

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

Subgrain boundaries in octachloropropane: deformation patterns, subgrain boundary orientation and density

  • Ree, Jin-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.20-33
    • /
    • 1994
  • Some of the seven types of subgrain boundaries (Means and Ree, 1988) in octachloropropane samples show distinctive deformation patterns during their development. Type II subgrain boundaries migrate to accommodate the deformation difference between adjacent grains. The formation of Type III requires a rigid-body roation of grains to reduce misorientation of adjacent grains. Type I, IV, V and VI develop either in static or dynamic condition. Type VII form only in static environments after deformation. Ribbon grains can develop via Type III or Type IV process. The orientation pattern and density of subgrain boundaries are more or less stable through a post-deformation heating. Subgrain boundary orientations are symmetric with respect to the grain-shape foliation in pure shear. In simple shear, their maximum inclines toward the direction of shear.

  • PDF

Effects of Nitrogen on Deformation Behavior of Duplex Stainless Steel (이상 스테인레스강의 변형거동에 미치는 질소의 영향)

  • 이형직;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.49-52
    • /
    • 2003
  • The effects of nitrogen on the deformation behavior of duplex stainless steel have been studied The variation of strength was correlated with the characteristic microstructures. Analysis based on Hall-Petch relation confirmed that nitrogen enhances phase-boundary strengthening effect. The evolution of dislocation structure, slip traces, and misorientation distribution during deformation were also characterized to elucidate the effect of nitrogen on inelastic deformation mechanism.

  • PDF

Characterization of Superplastic Deformation Behaviors of 7075 Al Alloy (초소성 7075알루미늄 합금의 변형특성 평가)

  • 권용남;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.65-71
    • /
    • 1998
  • The superplastic deformation behaviors of 7075Al alloy have been characterized experimentally and analyzed by the internal variable theory of inelastic deformation. A simple rheological model including the grain boundary sliding has been used to interpret the superplastic deformation behaviors. A series of load relaxation and tensile tests have been carried out for 7075Al alloy at the various temperatures. The superplastic deformation of 7075Al alloy is confirmed to consist of the grain boundary sliding and accommodating grain matrix defprmation.

  • PDF

Effects of α2/β Volume Fraction on the Superplastic Deformation (2 상 Ti3Al-xNb 계 금속간 화합물들의 초소성 특성에 미치는 상분율의 영향)

  • 김지식
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.447-456
    • /
    • 2002
  • A study has been made to investigate the boundary sliding and its accommodation mode with respect to the variation of $\alpha$$_2$/$eta$ volume fraction during superplastic deformation of two-phase Ti$_3$Al-xNb intermetallics. Step strain rate and load relaxation tests have been performed at 950, 970 and 99$0^{\circ}C$ to obtain the flow stress curves and to analyze the deformation characteristics by the theory of inelastic deformation. The results show that the grain matrix deformation and boundary sliding of the three intermetallics containing 21, 50 and 77% in $eta$ volume fractions are well described by the plastic deformation and viscous flow equations. Due to the equal accommodation of both $a^2$ and $\beta$ phases, the accommodation modes for fine-grained materials are in good agreement with the iso-strain rate models. The sliding resistance analyzed for the different boundaries is the lowest in the $\alpha$$_2$/$\alpha$$_2$ boundary, and increases in the order of $\alpha$$_2$/$\alpha$$_2$<< $\alpha$$_2$/$\beta$ = $\beta$/$\beta$, which plays an important role in controlling the superplasticity of the alloys with the various $\alpha$$_2$/$\beta$ phase ratio.