• Title/Summary/Keyword: Deformation Behavior

Search Result 3,350, Processing Time 0.028 seconds

Discontinuous deformation analysis for reinforced concrete frames infilled with masonry walls

  • Chiou, Yaw-Jeng;Tzeng, Jyh-Cherng;Hwang, Shuenn-Chang
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.201-215
    • /
    • 1998
  • The structural behavior of reinforced concrete frame infilled with a masonry wall is investigated by the method of discontinuous deformation analysis (DDA). An interface element is developed and it is incorporated into DDA to analyze the continuous and discontinuous behavior of the masonry structure. The numerical results are compared with previous research and possess satisfactory agreement. Then the structural behavior and stress distribution of a reinforced concrete frame infilled with a masonry wall subjected to a horizontal force are studied. In addition, the justification of equivalent strut is assessed by the distribution of principal stresses. The results show that the behavior of the masonry structure is highly influenced by the failure of mortar. On the basis of the distribution of principal stress of the masonry wall in the reinforced concrete frame, the equivalent strut can be approximately substituted for the masonry wall without separation and opening. However, the application of equivalent strut to the masonry wall with separation and opening needs further study.

The microstructure and mechanical performance of high strength alloy steel X2M

  • Manigandan, K.;Srivatsan, T.S.;Freborg, A.M.;Quick, T.;Sastry, S.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.283-295
    • /
    • 2014
  • In this paper, the microstructure, hardness, tensile deformation and fracture behavior of high strength alloy steel X2M is presented anddiscussed. The influence of both composition and processing on microstructure of the as-provided material and resultant influence of microstructure, as a function of orientation, on hardness, tensile properties and final fracture behavior is highlighted. The macroscopic mode and intrinsic microscopic features that result from fracture of the steel specimens machined from the two orientations, longitudinal and transverse is discussed. The intrinsic microscopic mechanisms governing quasi-static deformation and final fracture behavior of this high strength steel are outlined in light of the effects oftest specimen orientation, intrinsic microstructural effects and nature of loading.

Deformation Properties of TiC-Mo Eutectic Composite at High Temperature (TiC-Mo 공정복합재료의 고온 변형특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.568-573
    • /
    • 2013
  • The deformation properties of a TiC-Mo eutectic composite were investigated in a compression test at temperatures ranging from room temperature to 2053 K and at strain rates ranging from $3.9{\times}10^{-5}s^{-1}$ to $4.9{\times}10^{-3}s^{-1}$. It was found that this material shows excellent high-temperature strength as well as appreciable room-temperature toughness, suggesting that the material is a good candidate for high-temperature application as a structure material. At a low-temperature, high strength is observed. The deformation behavior is different among the three temperature ranges tested here, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurs, and from the beginning the work hardening level is high. At a high temperature, a yield drop occurs again, after which deformation proceeds with nearly constant stress. The temperature- and yield-stress-dependence of the strain is the strongest in this case among the three temperature ranges. The observed high-temperature deformation behavior suggests that the excellent high-temperature strength is due to the constraining of the deformation in the Mo phase by the thin TiC components, which is considerably stronger than bulk TiC. It is also concluded that the appreciable room-temperature toughness is ascribed to the frequent branching of crack paths as well as to the plastic deformation of the Mo phase.

Deformation characteristics of tunnel bottom after construction under geological conditions of long-term deformation

  • Kim, Nag-Young;Park, Du-Hee;Jung, Hyuk-Sang;Kim, Myoung-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • Mountainous areas cover more than 70% of Korea. With the rapid increase in tunnel construction, tunnel-collapse incidents and excessive deformation are occurring more frequently. In addition, longer tunnel structures are being constructed, and geologically weaker ground conditions are increasingly being encountered during the construction process. Tunnels constructed under weak ground conditions exhibit long-term deformation behavior that leads to tunnel instability. This study analyzes the behavior of the bottom region of tunnels under geological conditions of long-term deformation. Long-term deformation causes various types of damage, such as cracks and ridges in the packing part of tunnels, as well as cracks and upheavals in the pavement of tunnels. We observed rapid tunnel over-displacement due to the squeezing of a fault rupture zone after the inflow of a large amount of groundwater. Excessive increments in the support member strength resulted in damage to the support and tunnel bottom. In addition, upward infiltration pressure on the tunnel road was found to cause severe pavement damage. Furthermore, smectite (a highly expandable mineral), chlorite, illite, and hematite, were also observed. Soil samples and rock samples containing clay minerals were found to have greater expansibility than general soil samples. Considering these findings, countermeasures against the deformation of tunnel bottoms are required.

Thermal Fatigue Degradation Behavior of Ni-Ti Shape Memory Alloy (Ti-Ni 형상기억합금의 열피로열화 거동)

  • 박영철;조용배;오세욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2913-2921
    • /
    • 1994
  • In SMA(shape memory alloy), the degradation by fatigue is one of the most important problems to be overcome, when SMA is used for robot-actuator material. The actuator is operated repeatitively for long time and its repeating operation develops the fatigue degradation of SMA. The fatigue degradation changes the transformation temperature and deformation behavior and results in inaccurate operation control of robot. Accordingly, the changing behavior of transformation temperature and deformation which results from repeating operation is to be investigated in advance and the scheme to resolve those problems have to be made for the design of actuator. In this study, the fatigue tests were carried out on SMA specimens prepared to have different condition of aging time and pre-strain with the direct-current heating-cooling method, which was a general method of operation in robot actuators. The behavior of transformation temperature and deformation were examined and analyzed in each specimen and the study was performed to establish the optimistic manufacturing condition of SMA against the fatigue degradation.

Effect of constant loading on unsaturated soil under water infiltration conditions

  • Rasool, Ali Murtaza;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-232
    • /
    • 2020
  • In many tropical regions, soil structures often fail under constant loads as a result of decreasing matric suction due to water infiltration. Most of the previous studies have been performed by infiltrating water in the soil specimen by keeping shear stress constant at 85-90% of peak shear strength in order to ensure specimen failure during water infiltration. However, not many studies are available to simulate the soil behavior when water is infiltrated at lower shear stress and how the deformations affect the soil behavior if the failure did not occur during water infiltration. This research aimed at understanding both the strength and deformation behavior of unsaturated soil during the course of water infiltration at 25%, 50% and 75% of maximum deviatoric stress and axial strain by keeping them constant. A unique stress-strain curve expresses the transient situation from unsaturated condition to failure state due to water infiltration is also drawn. The shearing-infiltration test results indicate that the water infiltration reduces matric suction and increase soil deformation. This research also indicates that unsaturated soil failure problems should not always be treated as shear strength problems but deformation should also be considered while addressing the problems related to unsaturated soils.

Deformation Behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ Bulk Metallic Glass at High Temperatures (고온에서 $Zr_{55}Al_{10}Ni_5Cu_{30}$ 벌크 유리금속의 변형거동)

  • Jeong, Young-Jin;Kim, Ki-Hyun;Oh, Sang-Yeob;Shin, Hyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.342-347
    • /
    • 2004
  • The deformation behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass under tensile loading at different range of strain rates and temperatures between 680 K and 740 K were investigated. The variation in the deformation behavior of $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass which resulted from the crystallization induced during testing was reported. The$Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass has showed either homogeneous or inhomogeneous deformation depending on test condition. It exhibited a maximum elongation of about 560 % at the condition of $407^{\circ}C{\times}\;10^{-4}/s$. The flow behavior exhibited three different types and the flow stress became lower at higher temperatures and lower strain rates. The increase of the time elapsed during heating resulted in the partial crystallization of bulk metallic glass phase and eventually strain hardening and brittle fracture.

  • PDF

High temperature deformation behavior of $\alpha\;and\;\beta$ phase of Ti-6Al-4V alloy with an equiaxed microstructure (등축정 Ti-6Al-4V 합금의 $\alpha,\;\beta$ 구성상의 고온변형거동 규명)

  • Lee, You-Hwan;Yeom, Jong-Taek;Park, Nho-Kwang;Lee, Chong-Soo;Kim, Jeoung-Han
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.295-298
    • /
    • 2005
  • High temperature deformation behavior of $\alpha\;and\;\beta$ phase of Ti-6Al-4V was investigated within the framework of a self-consistent approach at various temperature ranges. To examine the flow behavior of u-phase, Ti-7.0Al-1.5V alloy was used, whose chemical composition is close to that of the $\alpha$ phase in Ti-6Al-4V at hot working temperatures. The flow stress of $\beta$ phase was predicted by using self-consistent approach. The flow stress of $\alpha$ phase was higher than that of $\beta$ phase above $750^{\circ}C$, while the $\beta$ phase revealed higher flow stress than a phase at $650^{\circ}C$. It was found that the relative strength and strain rate ratio between $\alpha\;and\;\beta$ phase significantly varied with temperature. From this approach, the mode for grain matrix deformation was proposed as a mixed type of both iso-stress and iso-strain rate modes.

  • PDF

Comparison Study of Prediction Models for Hot Deformation Behavior of Tool Steel (공구강의 고온 변형 거동 예측을 위한 모델 비교 연구)

  • Kim, Keunhak;Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.180-186
    • /
    • 2018
  • High temperature flow behaviors of Fe-Cr-Mo-V-W-C tool steel were investigated using isothermal compression tests on a Gleeble simulator. The compressive test temperature was varied from 850 to $1,150^{\circ}C$ with the strain rate ranges of 0.05 and $10s^{-1}$. The maximum height reduction was 45%. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrhenius-typed equation with the Zener-Hollomon parameter was proposed to simulate the hot deformation behavior of Fe-Cr-Mo-V-W-C steel. An artificial neural network (ANN) model was also developed to compare with the constitutive model. It was concluded that the ANN model showed more accurate prediction compared with the constitutive model for describing the hot compressive behavior of Fe-Cr-Mo-V-W-C steel.

An optimized torsional design of asymmetric wall structures (비대칭 벽식구조의 최적 비틀림 설계)

  • 조봉호;홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.327-334
    • /
    • 2002
  • This paper develops an optimized torsional design method of asymmetric wall structures considering deformation capacities of walls. Contrary to the current torsional provisions, a deformation based torsional design is based on the assumption that stiffness and strength are dependent. Current torsional provisions specify two design eccentricity of stiffness to calculate the design forces of members. But such a methodology leads to an excessive over-strength of some members and an optimal torsional behavior is not ensured. Deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Because optimal torsional behavior can be defined based on the deformation of members, deformation based torsional design procedure can be applied to the optimal and performance-based torsional design. To consider the effect of accidental eccentricity, an over-strength factor is defined. The over-strength factor is determined from performance level, torsional resistance and arrangement of walls.

  • PDF