• Title/Summary/Keyword: Deformable Convolution

Search Result 7, Processing Time 0.024 seconds

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • Noise generated during the acquisition and transmission of CT images acts as a factor that degrades image quality. Therefore, noise removal to solve this problem is an important preprocessing process in image processing. In this paper, we remove noise by using a deformable convolutional autoencoder (DeCAE) model in which deformable convolution operation is applied instead of the existing convolution operation in the convolutional autoencoder (CAE) model of deep learning. Here, the deformable convolution operation can extract features of an image in a more flexible area than the conventional convolution operation. The proposed DeCAE model has the same encoder-decoder structure as the existing CAE model, but the encoder is composed of deformable convolutional layers and the decoder is composed of conventional convolutional layers for efficient noise removal. To evaluate the performance of the DeCAE model proposed in this paper, experiments were conducted on CT images corrupted by various noises, that is, Gaussian noise, impulse noise, and Poisson noise. As a result of the performance experiment, the DeCAE model has more qualitative and quantitative measures than the traditional filters, that is, the Mean filter, Median filter, Bilateral filter and NL-means method, as well as the existing CAE models, that is, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) and SSIM. (Structural Similarity Index Measure) showed excellent results.

Design of a Semantic Segmentation Model Usingan Attention Module Based on Deformable Convolution (Deformable Convolution 기반 어텐션 모듈을 사용한 의미론적 분할 모델 설계)

  • Jin-Seong Kim;Se-Hoon Jung;Chun-Bo Sim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.11-13
    • /
    • 2023
  • 의미론적 분할(Semantic Segmentation)은 이미지 내의 객체 및 배경을 픽셀 단위로 분류하는 작업으로 정밀한 탐지가 요구되는 분야에서 활발히 연구되고 있다. 기존 어텐션 기법은 의미론적 분할의 다운샘플링(Downsampling) 과정에서 발생하는 정보손실을 완화하기 위해 널리 사용됐지만 고정된 Convolution 필터의 형태 때문에 객체의 형태에 따라 유동적으로 대응하지 못했다. 본 논문에서는 이를 보완하고자 Deformable Convolution과 셀프어텐션(Self-attention) 구조기반 어텐션 모듈을 사용한 의미론적 분할 모델을 제안한다.

Satellite Building Segmentation using Deformable Convolution and Knowledge Distillation (변형 가능한 컨볼루션 네트워크와 지식증류 기반 위성 영상 빌딩 분할)

  • Choi, Keunhoon;Lee, Eungbean;Choi, Byungin;Lee, Tae-Young;Ahn, JongSik;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.895-902
    • /
    • 2022
  • Building segmentation using satellite imagery such as EO (Electro-Optical) and SAR (Synthetic-Aperture Radar) images are widely used due to their various uses. EO images have the advantage of having color information, and they are noise-free. In contrast, SAR images can identify the physical characteristics and geometrical information that the EO image cannot capture. This paper proposes a learning framework for efficient building segmentation that consists of a teacher-student-based privileged knowledge distillation and deformable convolution block. The teacher network utilizes EO and SAR images simultaneously to produce richer features and provide them to the student network, while the student network only uses EO images. To do this, we present objective functions that consist of Kullback-Leibler divergence loss and knowledge distillation loss. Furthermore, we introduce deformable convolution to avoid pixel-level noise and efficiently capture hard samples such as small and thin buildings at the global level. Experimental result shows that our method outperforms other methods and efficiently captures complex samples such as a small or narrow building. Moreover, Since our method can be applied to various methods.

Compression Artifact Reduction for 360-degree Images using Reference-based Deformable Convolutional Neural Network

  • Kim, Hee-Jae;Kang, Je-Won;Lee, Byung-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose an efficient reference-based compression artifact reduction network for 360-degree images in an equi-rectangular projection (ERP) domain. In our insight, conventional image restoration methods cannot be applied straightforwardly to 360-degree images due to the spherical distortion. To address this problem, we propose an adaptive disparity estimator using a deformable convolution to exploit correlation among 360-degree images. With the help of the proposed convolution, the disparity estimator establishes the spatial correspondence successfully between the ERPs and extract matched textures to be used for image restoration. The experimental results demonstrate that the proposed algorithm provides reliable high-quality textures from the reference and improves the quality of the restored image as compared to the state-of-the-art single image restoration methods.

  • PDF

Time-domain hydroelastic analysis with efficient load estimation for random waves

  • Kang, H.Y.;Kim, M.H.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.266-281
    • /
    • 2017
  • Hydroelastic interactions of a deformable floating body with random waves are investigated in time domain. Both hydroelastic motion and structural dynamics are solved by expansion of elastic modes and Fourier transform for the random waves. A direct and efficient structural analysis in time domain is developed. In particular, an efficient way of obtaining distributive loads for the hydrodynamic integral terms including convolution integral by using Fubini theory is explained. After confirming correctness of respective loading components, calculations of full distributions of loads in random waves are expedited by reformulating all the body loading terms into distributed forms. The method is validated by extensive convergence tests and comparisons against the counterparts of the frequency-domain analysis. Characteristics of motion/deformation responses and stress resultants are investigated through a parametric study with varying bending rigidity and types of random waves. Relative contributions of componential loads are identified. The consequence of elastic-mode resonance is underscored.

Finite Element Analysis for Vibration of Laminated Plate Using a Consistent Discrete Theory Part I : Variational Principles (복합재료적층판의 진동해석을 위한 유한요소모델 I. 변분원리의 유도)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.85-101
    • /
    • 1994
  • A family of variational principles governing the dynamics of laminated plate has been derived using a variationally consistent shear deformable discrete laminated plate theory with particular reference to finite element procedures. The theoretical basis for the derivation is Sandhu's generalized procedure for the variational formulation of linear coupled boundary value problem. As the bilinear mapping to write the operator matrix of the field equations in self-adjoint form, convolution product was employed. Boundary conditions, initial conditions and probable internal discontinuity were explicitly included in the governing functionals. Some interesting extensions and specializations of the general variational principle were presented, which can provide many different finite element formulations for the problem.

  • PDF

Using Faster-R-CNN to Improve the Detection Efficiency of Workpiece Irregular Defects

  • Liu, Zhao;Li, Yan
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.625-627
    • /
    • 2022
  • In the construction and development of modern industrial production technology, the traditional technology management mode is faced with many problems such as low qualification rates and high application costs. In the research, an improved workpiece defect detection method based on deep learning is proposed, which can control the application cost and improve the detection efficiency of irregular defects. Based on the research of the current situation of deep learning applications, this paper uses the improved Faster R-CNN network structure model as the core detection algorithm to automatically locate and classify the defect areas of the workpiece. Firstly, the robustness of the model was improved by appropriately changing the depth and the number of channels of the backbone network, and the hyperparameters of the improved model were adjusted. Then the deformable convolution is added to improve the detection ability of irregular defects. The final experimental results show that this method's average detection accuracy (mAP) is 4.5% higher than that of other methods. The model with anchor size and aspect ratio (65,129,257,519) and (0.2,0.5,1,1) has the highest defect recognition rate, and the detection accuracy reaches 93.88%.