• Title/Summary/Keyword: Deform

Search Result 460, Processing Time 0.026 seconds

Preform Design of a Forged Punch by Approximate Optimization (근사 최적화 기법을 이용한 펀치 단조품의 예비성형체 설계)

  • Park, Sangkun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4057-4064
    • /
    • 2014
  • In this paper, attempts were made to design a preform for a final punch inexpensively using the proposed approximate optimization method or metamodel-based simulation optimization. The design objective of this work is to achieve a uniform distribution of effective strains, the angle dimension of the preformed punch is chosen as a design variable, and maximum underfill ratio is used as a constraint. For this optimization, a computer simulation of a practical punch forging process is run using DEFORM software, in which a preformed punch(workpiece), a master punch(upper die), and a bottom die are dealt with. A validation method is introduced to determine if the simulation results match the actual forging process. In addition, this work presents the detailed design optimization procedure consisting of (i) generation of an initial metamodel, (ii) metamodel optimization, (iii) validation of metamodel-predicted optimum, and (iv) metamodel improvement.

Experimental Investigation of the Effect of Manufacturing and Working Conditions on the Deformation of Laminated Composite Structures (적층복합재료구조물의 변형에 미치는 제작조건과 작동조건의 영향에 대한 실험적 고찰)

  • Nhut, Pham Thanh;Yum, Young-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.265-272
    • /
    • 2013
  • Fiber-reinforced plastic (FRP) is applied to fabricate the main structures of composite boats. Most of them are made from molds. These products deform after releasing from the mold and they also deform in high temperature environment. Therefore, experimental investigation and evaluation of deformation of laminated composite structures under various manufacturing and working conditions are necessary. The specimens of L-shape and curveshape were made from unsaturated polyester resin and fiberglass material. Input factors (independent variables) are percentage of hardener and manufacturing temperature and four levels of working temperature and output factor is the deformation which is measured on these specimens. From the results, it was observed that the higher the hardener rate and temperature, the lower the deformation. When the working temperature increased, the specimens showed great variations for the initial deformation values. Besides, the values of deformation or input factors could be predicted by regression equations.

A Study of the FEM Forming Analysis of the Al Power Forging Piston (유한요소해석을 이용한 알루미늄분말단조 피스톤 성형해석에 관한 연구)

  • Kim, Ho-Yoon;Park, Chul-Woo;Kim, Hyun-Il;Park, Kyung-Seo;Kim, Young-Ho;Joe, Ho-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1543-1548
    • /
    • 2010
  • Powder metallurgy processes are used to form Net-Shape products and have been widely used in the production of automobile parts to improve its manufacture productivity. Powder-forging technology is being developed rapidly because of its economic merits and because of the possibility of reducing the weight of automobile parts by replacing steel parts with aluminum ones, in particular while manufacturing automotive parts. In the powder-forging process, the products manufactured by powder metallurgy are forged in order to remove any pores inside them. Powderforging technology can help expand the applications of powder metallurgy; this is possible because powder-forging technology enables the minimization of flashes, reduction of the number of stages, and possible grain refinement. At present, powder forging is widely used for manufacturing primary mechanical parts as in combination with the technology of powder forging of aluminum alloy pistons.

Production Process Development and Prototype Evaluation for Roller Tappet Housing of Valvetrain (밸브트레인용 롤러태핏 하우징의 제작 공정 개발 및 시제품 평가)

  • Gwak, Eun-Jo;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.223-229
    • /
    • 2016
  • In this study, a cold forging process was developed for the roller tappet housing of an engine valvetrain system. A tappet sample was manufactured and subjected to an endurance test. The material properties were obtained from a compression test, and forging analysis was carried out to design a forging process using a commercial program, Deform-3D. The forging process was set up based on the analysis results, and a die set and sample tappet housing were manufactured. To evaluate the sample, the dimensional accuracy, surface roughness, parallelism, and concentricity were measured and confirmed. To evaluate the actuation and durability, a special test rig was developed to simulate the valvetrain system of the engine. An actuation test was performed based on the idle speed of a general diesel engine, and an endurance test was done based on the maximum speed. The results show minor wear of 0.002 mm. The developed test rig will be used to evaluate the actuation and durability of other valvetrain parts.

A forging die design to improve the flower shape of flange bolt (플랜지 볼트의 플라워 형상 결함 개선을 위한 단조 금형설계)

  • Kim, Kwan-Woo;Lee, Geun-Tae;Cho, Hae-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.314-319
    • /
    • 2016
  • Flange bolt has a circular flange under the head that acts like a washer to distribute the clamping load over a large area. Flange bolt has usually been manufactured by cold forging. Flower shape defect occurs in the flange forging stage. This defect causes lack of dimensional accuracy and low quality. So it is needed to improve these forging defects. In this study, die design method for flower shape defect of flange bolt was suggested. In order to improve flower shape defect, inner diameter of the addition die in conventional forging process was modified. The forging process with applied modified die was simulated by commercial FEM code DEFORM-3D. The simulated results for modified die were confirmed by experimental trials with the same condition.

Development of a double-sliding friction damper (DSFD)

  • Shen, Shaodong;Pan, Peng;Sun, Jiangbo;Gong, Runhua;Wang, Haishen;Li, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.151-162
    • /
    • 2017
  • In practical engineering, the friction damper is a widely used energy dissipation device because of its large deformation capacity, stable energy dissipation capability, and cost effectiveness. While based on conventional friction dampers, the double-sliding friction damper (DSFD) being proposed is different in that it features two sliding friction forces, i.e., small and large sliding friction forces, rather than a single-sliding friction force of ordinary friction dampers. The DSFD starts to deform when the force sustained exceeds the small-sliding friction force, and stops deforming when the deformation reaches a certain value. If the force sustained exceeds the large sliding friction force, it continues to deform. Such a double-sliding behavior is expected to endow structures equipped with the DSFD better performance in both small and large earthquakes. The configuration and working mechanism of the DSFD is described and analyzed. Quasi-static loading tests and finite element analyses were conducted to investigate its hysteretic behavior. Finally, time history analysis of the single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems were performed to investigate the seismic performance of DSFD-equipped structures. For the purpose of comparison, tests on systems equipped with conventional friction dampers were also performed. The proposed DSFD can be realized perfectly, and the DSFD-equipped structures provide better performances than those equipped with conventional friction dampers in terms of interstory drift and floor acceleration. In particular, for the MDOF system, the DSFD helps the structural system to have a uniform distributed interstory drift.

A Study on Boesun -On the Comparison of the Basic Patterns of Boesun- (한복 버선에 관한 연구 -버선 원형의 비교를 중심으로-)

  • Moon Meyng Ok;Kim Ya Ji
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.9 no.2
    • /
    • pp.45-55
    • /
    • 1985
  • The main purpose of this study is to investigate the suitability of Boesun (the Korean Socks) to the foot. In order to find the problem of Boesun, I made up the questionnaire. The suitabltity of Boesun to the foot was experimented by 'the replica method', 'the fuse method' and 'the deform painting method'. The pressure of Boesun to the foot was measured by utilizing a human sensitivity as a sensor. The results were as follows. 1. In the questionnaire, the fore part of Boesum was uncomfortable by the pressure. 2. The surface area of Boesun was generally smaller than the surface area of the foot, but the ratio of two surface area related closely to the individual. 3. At the cross-sections from No. 1 to No. 10, the breadth of the worn Boesun was smaller than the breadth of the foot. Because of the smaller breadth of the worn Boesun, the foot was get the pressure at the fore part of Boesun. This result accorded with the result of the questionnaire. 4. The location of the deformation by 'deform painting method' was almost the fore part of Boesun. 5. The pressure of Kwon's Boesun was 2.57$\~$2.99kg, the pressure of Kim's Boesun was 1.31$\~$1.74 kg and the pressure of Lee's Boesun was 3.42$\~$3.88kg. Compared with the distribution chart of the pressure, Kwon's Boesun was involved the back part of 'slightly pressured' and the fore part of 'pressured', Kim's Boesun was involved the fore part of 'slightly pressured' and Lee's Boesun was involved the middle part of 'pressured'.

  • PDF

Thread Rolling Analysis for Lead Screw Process Design (Lead Screw 공정 설계를 위한 전조 해석)

  • Shin, Myoung-Soo;Cha, Sung-Hoon;Kim, Jong-Bong;Kim, Jong-Ho;Ra, Seung-Woo
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • This paper presents the numerical analysis of thread rolling. Firstly, the analysis is focused on the effective analysis conditions that guarantee the reliability of the analysis results. The investigated parameters are the number of teeth and the number of elements. Using the analysis results, the number of elements and the number of teeth that guarantee the results are found. And then, the effects of the process parameters such as tool shape and temperature on the thread rolling are investigated. The analysis is carried out using DEFORM-3D. The results show that the flank angle and crest round have an effect on the thread rolling load. It is also shown that temperature have significant effects on the effective strain distribution, rolling load, and crack initiation. The crack initiation is predicted using the Cockcroft-Latham criterion.

A Study on the Strength and Stiffness of Multi-Stage Cubic Truss Unit Structures (복합 입체형 정육면체 트러스 단위구조체의 강도 및 강성에 대한 해석 연구)

  • Choi, Jeongho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.139-145
    • /
    • 2019
  • This paper investigated the strength and stiffness of composite truss unit structures. The model used is a core-filled model combining the Kagome model and the cube truss model. The material properties used for the analysis are 304 stainless steel with elastic modulus of 193 GPa and yield stress of 215 MPa. The theoretical equation is derived from the relative elasticity relation of Gibson - Ashby ratio, the analysis was performed using Deform 3D, a commercial tool. In conclusion, the relative elasticity for this unit model correlates with 1.25 times the relative density and constant coefficient, elasticity is inversely proportional to pore size. The relative compressive strength has a correlation with relative density of 1.25 times. Proof of this is a real experiment, the derived theoretical relationship should further consider mechanical behavior such as bending and buckling. In the future, it is hoped that the research on the elasticity and the stress according to the structure of the three-dimensional space will be continued.

A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process (고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구)

  • Jeon, H.W.;Suh, C.H.;Oh, S.G.;Kwon, T.H.;Kang, G.P.;Yook, H.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.