• Title/Summary/Keyword: Deforestation and forest degradation

Search Result 43, Processing Time 0.025 seconds

Joint Crediting Mechanism under the Paris Agreement and Its Implication to the Climate Policy in Korea

  • Jung, Tae Yong;Sohn, Jihyun
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.373-381
    • /
    • 2016
  • Before the Conference of Parties (COP) 21 of the United Nations Framework Convention on Climate Change (UNFCCC) in 2015, most parties of UNFCCC had submitted their intended nationally determined contributions (INDCs) and to achieve their voluntary targets, some parties consider using international market mechanisms. As one of such mechanisms, Japan promoted its own bilateral mechanism called Joint Crediting Mechanism (JCM). In this study, feasibility studies and projects under JCM have been analyzed by project type, sector, country and region, which could provide some implications in designing Korea's future climate policy to achieve Korea's targets of 11.7% using international market mechanism in INDC. Since 2010, JCM has promoted 542 projects and feasibility studies in 44 countries according to the Institute for Global Environmental Strategies (IGES) database. Among 542 projects, about 80% were feasibility studies implying that JCM was more focused on project identification. However, current trends of JCM show that more projects will be soon implemented based on these feasibility studies. For sectoral categorization, projects were categorized into seven sectors-energy technology, energy efficiency, renewable energy, waste management, city, strategic planning and projects related to the country's efforts to reduce emissions from deforestation and forest degradation (REDD+). JCM projects were mitigation focused with more than 70% of projects were related to energy efficiency, renewable energy and energy technology. At the regional and country level, JCM is highly focused on Asia and especially, more than 100 projects were developed in Indonesia. Based on the analysis of JCM, in order to develop bilateral international mechanism for Korea, it is worthwhile to emphasize that Korea considers Asian countries as her partner. In addition, Korea may consider the collaboration with Multilateral Development Banks (MDBs) to implement projects identified by Korea and Asian partner countries. Furthermore, strategically, it is recommendable to develop jointly with Japan who has already capacity and networks with other Asian countries to mitigate GHG emissions. Such financial resources from MDBs and Japan may contribute to meet the 11.3% of GHG reduction target from abroad according to INDC of Korea.

Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia

  • Gebeyehu, Getaneh;Soromessa, Teshome;Bekele, Tesfaye;Teketay, Demel
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.43-60
    • /
    • 2019
  • Background: Tropical montane forests played an important role in the provision of ecosystem services. The intense degradation and deforestation for the need of agricultural land expansion result in a significant decline of forest cover. However, the expansion of agricultural land did not completely destruct natural forests. There remain forests inaccessible for agricultural and grazing purpose. Studies on these forests remained scant, motivating to investigate biomass and soil carbon stocks. Data of biomass and soils were collected in 80 quadrats ($400m^2$) systematically in 5 forests. Biomass and disturbance gradients were determined using allometric equation and disturbance index, respectively. The regression modeling is employed to explore the spatial distribution of carbon stock along disturbance and environmental gradients. Correlation analysis is also employed to identify the relation between site factors and carbon stocks. Results: The result revealed that a total of 1655 individuals with a diameter of ${\geq}5cm$, representing 38 species, were measured in 5 forests. The mean aboveground biomass carbon stocks (AGB CS) and soil organic carbon (SOC) stocks at 5 forests were $191.6{\pm}19.7$ and $149.32{\pm}6.8Mg\;C\;ha^{-1}$, respectively. The AGB CS exhibited significant (P < 0.05) positive correlation with SOC and total nitrogen (TN) stocks, reflecting that biomass seems to be a general predictor of SOCs. AGB CS between highly and least-disturbed forests was significantly different (P < 0.05). This disturbance level equates to a decrease in AGB CS of 36.8% in the highly disturbed compared with the least-disturbed forest. In all forests, dominant species sequestrated more than 58% of carbon. The AGB CS in response to elevation and disturbance index and SOC stocks in response to soil pH attained unimodal pattern. The stand structures, such as canopy cover and basal area, had significant positive relation with AGB CS. Conclusions: Study results confirmed that carbon stocks of studied forests were comparable to carbon stocks of protected forests. The biotic, edaphic, topographic, and disturbance factors played a significant variation in carbon stocks of forests. Further study should be conducted to quantify carbon stocks of herbaceous, litter, and soil microbes to account the role of the whole forest ecosystem.

Status of Sediment Dynamics in Lake Takkobu of the Kushiro Mire, Japan, Associated with Forestry and Agricultural Development in the Watershed (산림과 농업 개발로 인한 쿠시로습원 타호부호수의 최근 토사동태)

  • Ahn, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.755-763
    • /
    • 2010
  • Fine sediment loadings from agricultural watersheds have led to habitat degradation in Lake Takkobu, northern Japan. Fifteen lake sediment core samples were obtained and analyzed to develop a chronology using physical sediment characters, $^{137}Cs$, and tephra. The reconstructed sedimentation rates over the past ca 300 years suggested that sedimentation rates increased drastically after land use development. With a natural sedimentation rate of 0.1-1.1 mm $year^{-1}$ until 1898, lake sedimentation accelerated to 0.6-12.8 mm $year^{-1}$ after 1898. The sedimentation rates after land use change, such as forestry, river engineering works, and agricultural development, were about 6-12 times higher than that under natural conditions, leading to accelerated lake shallowing over the last ca 100 years. Sedimentation rates between 1898 and 1963 differed with location in the lake because of spatial variation in the sediment flux from the contributing rivers and their watersheds. The sedimentation rate in the southern zone between 1898 and 1963 was significantly higher than that in the middle and northern zones, reflecting active sediment production associated with forestry for charcoal production and canal construction for transportation in the southern watersheds and wetlands. The sedimentation rate after 1963 did not vary among the three zones, because decreasing sedimentation was found in most of the southern sites whereas an increasing trend was observed in the middle and northern sites. This result can be explained by shallowing of lake-bottom morphology with sedimentation and the resultant reduction of sediment retention capacity in the southern zone. Moreover, the sedimentation rate at sampling sites close to river mouths increased by 5-32 times compared with natural rates before 1898. The Kushiro River, into which Lake Takkobu drains under regular flow conditions, further contributed to an increased sedimentation rate, because water from the Kushiro River flows back into Lake Takkobu during floods.