• Title/Summary/Keyword: Deflection modeling

Search Result 191, Processing Time 0.027 seconds

Side-NSM composite technique for flexural strengthening of RC beams

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Saiful Islam, A.B.M.;Salam, Md. Abdus;Kim, Hung Mo
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.439-448
    • /
    • 2017
  • Reinforced concrete (RC) infrastructures often require strengthening due to error in design, degradation of materials properties after prolong utilization and increases load carrying capacity persuaded by new use of the structures. For this purpose, a newly proposed Side Near Surface Mounted (SNSM) composite technique was used for flexural strengthening of RC beam specimens. Analytical and non-linear finite element modeling (FEM) using ABAQUS were performed to predict the flexural performance of RC specimens strengthened with S-NSM using steel bars as a strengthening reinforcement. RC beams with various SNSM reinforcement ratios were tested for flexural performance using four-point bending under monotonic loading condition. Results showed significantly increase the yield and ultimate strengths up to 140% and 144% respectively and improved failure modes. The flexural response, such as failure load, mode of failure, yield load, ultimate load, deflection, strain, cracks characteristic and ductility of the beams were compared with those predicted results. The strengthened RC beam specimens showed good agreement of predicted flexural behavior with the experimental outcomes.

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears (헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

A Modeling and Contact Force Analysis of the Catenary-pantograph System for a High-speed Rail Vehicle (고속 전철용 가선-팬터그래프 시스템의 모델링 및 접촉력 해석)

  • 김진우;박인기;장진희;왕영용;한창수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.474-483
    • /
    • 2003
  • In this study, the dynamic characteristics of a catenary system and pantograph supplying electrical power to high-speed trains are investigated. One of the most important issues accompanied by increasing the speed of high-speed rail is stabilization of current collection. To stabilize current collection, it is necessary the contact force between the catenary and the pantograph to be kept continuous without loss of contact. The analytical model of a catenary and a pantograph is constructed to simulate the behavior of an actual system. The analysis of the catenary based on the Finite Element Method (FEM) is performed to develop a catenary model suitable for high speed operation. The reliability of the models is verified by the comparison of the excitation test with Fast Fourier Transform (FFT) data of the actual system. The static deflection of the catenary, stiffness variation in contact lines, dynamic response of the catenary undergoing constant moving load, contact force, and each state of the pantograph model were calculated. It is confirmed that a catenary and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips

  • Mahmoud, Karam;Anand, Puneet;El-Salakawy, Ehab
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.607-622
    • /
    • 2018
  • A non-linear finite element model (FEM) was constructed using a three-dimensional software (ATENA-3D) to investigate the effect of strengthening on the behavior of prestressed hollow-core (PHC) slabs with or without openings. The slabs were strengthened using near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips. The constructed model was validated against experimental results that were previously reported by the authors. The validated FEM was then used to conduct an extensive parametric study to examine the influence of prestressing reinforcement ratio, compressive strength of concrete and strengthening reinforcement ratio on the behavior of such slabs. The FEM results showed good agreement with the experimental results where it captured the cracking, yielding, and ultimate loads as well as the mid-span deflection with a reasonable accuracy. Also, an overall enhancement in the structural performance of these slabs was achieved with an increase in prestressing reinforcement ratio, compressive strength of concrete, external reinforcement ratio. The presence of openings with different dimensions along the flexural or shear spans reduced significantly the capacity of the PHC slabs. However, strengthening these slabs with 2 and 4 (64 and $128mm^2$ that represent reinforcement ratios of 0.046 and 0.092%) CFRP strips was successful in restoring the original strength of the slab and enhancing post-cracking stiffness and load carrying capacity.

Modeling fire performance of externally prestressed steel-concrete composite beams

  • Zhou, Huanting;Li, Shaoyuan;Zhang, Chao;Naser, M.Z.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.625-636
    • /
    • 2021
  • This paper examines the fire performance of uninsulated and uncoated restrained steel-concrete composite beams supplemented with externally prestressed strands through advanced numerical simulation. In this work, a sequentially coupled thermo-mechanical analysis is carried out using ABAQUS. This analysis utilizes a highly nonlinear three-dimensional finite element (FE) model that is specifically developed and validated using full-sized specimens tested in a companion fire testing program. The developed FE model accounts for nonlinearities arising from geometric features and material properties, as well as complexities resulting from prestressing systems, fire conditions, and mechanical loadings. Four factors are of interest to this work including effect of restraints (axial vs. rotational), degree of stiffness of restraints, the configuration of external prestressed tendons, and magnitude of applied loading. The outcome of this analysis demonstrates how the prestressing force in the external tendons is primarily governed by the magnitude of applied loading and experienced temperature level. Interestingly, these results also show that the stiffness of axial restraints has a minor influence on the failure of restrained and prestressed steel-concrete composite beams. When the axial restraint ratio does not exceed 0.5, the critical deflection of the composite beam is lower than that of the composite beam with a restraint ratio of 1.0.

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

Bending and stability information of cylindrical structures in the application of sports equipment

  • Xiaoyuan Liu;Radzliyana Radzuwan;Nadiah Diyana Tan Binti Abdullah
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.189-203
    • /
    • 2023
  • This study investigates the bending and stability properties of cylindrical constructions, with a focus on their use in the design and implementation of sporting equipment. The work focuses on a cylindrical construction resembling nanomotors, similar to components seen in sports equipment, using mathematical modeling based on high-order beam theory and nonlocal strain gradient theory. The analysis provides important insights into the dynamic behavior of these systems, revealing light on the impact of numerous factors such as rotational velocity, section change rate, and structural dimensions. The results show a relationship between angular velocity growth and section change rate, which leads to an increase in fundamental frequency values. Furthermore, the research emphasizes the effect of structural factors on dynamic deflection, giving critical information for increasing the stability and performance of sporting equipment. This study adds to the area of sports engineering by providing a more nuanced understanding of how cylindrical constructions react under diverse settings. The results will help to guide the design and manufacturing processes of sports equipment, assuring improved stability and performance for players across a wide range of sports.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil (사질토에 근입된 해상풍력 모노파일 기초의 횡방향 거동 분석)

  • Jang, Hwa Sup;Kim, Ho Sun;Kwak, Yeon Min;Park, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.421-430
    • /
    • 2013
  • To predict behaviors of offshore wind turbines which are highly laterally loaded structures and to design them rationally, evaluating the soil-foundation interaction is important. Nowadays, there are many soil modeling methods for structural analysis of general structures subjected to vertical loads, but using the methods without any consideration for design of a monopile foundation is eschewed because it might cause wrong structural design due to the deferent loading state. In this paper, we identify the differences of the member forces and displacements by design methods. The results show that fixed end method is barely suitable for monopile design in terms of checking the serviceability because it underestimate the lateral displacement. Fixed end method and stiffness matrix method underestimate the member forces, whereas virtual fixed end method overestimates them. The results of p-y curve method and coefficient of subgrade reaction method are similar to the results of 3D soil modeling method, and 2D soil modeling method overestimates the displacement and member forces as compared with other methods.