• 제목/요약/키워드: Deflection modeling

검색결과 191건 처리시간 0.028초

Slope variation effect on large deflection of compliant beam using analytical approach

  • Khavaji, A.;Ganji, D.D.;Roshan, N.;Moheimani, R.;Hatami, M.;Hasanpour, A.
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.405-416
    • /
    • 2012
  • In this study the investigation of large deflections subject in compliant mechanisms is presented using homotopy perturbation method (HPM). The main purpose is to propose a convenient method of solution for the large deflection problem in compliant mechanisms in order to overcome the difficulty and complexity of conventional methods, as well as for the purpose of mathematical modeling and optimization. For simplicity, a cantilever beam of linear elastic material under horizontal, vertical and bending moment end point load is considered. The results show that the applied method is very accurate and capable for cantilever beams and can be used for a large category of practical problems for the aim of optimization. Also the consequence of effective parameters on the large deflection is analyzed and presented.

미세형상 가공을 위한 Micro Slot 가공에서의 공구변형에 의한 가공오차 보상 (Machining Error Compensation for Tool Deflection in Micro Slot-Cutting Processes for Fabrication of Micro Shapes)

  • 손종인;윤길상;서태일
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.121-127
    • /
    • 2008
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Despite the importance of micro end-milling, many related researches have given grand efforts to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. To solve this problem, machining error prediction method was proposed through a series of test micro cutting and analysis of their SEM images. An iterative algorithm was applied in order to obtain corrected tool path which allows reducing machining errors in spite of tool deflection. Experiments are carried out to validate the proposed approaches. In result, remarkable error reduction could be obtained.

Modeling of Mechanical Behavior of Microcantilever due to Intrinsic Strain during Deposition

  • Kim Sang-Hyun;Mani Sathyanarayanan;Boyd James G. IV
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1646-1652
    • /
    • 2006
  • A model of mechanical behavior of microcantilever due to intrinsic strain during deposition of MEMS structures is derived. A linear ordinary differential equation is derived for the beam deflection as a function of the thickness of the deposited layer. Closed-form solutions are not possible, but numerical solutions are plotted for various dimensionless ratios of the beam stiffness, the intrinsic strain, and the elastic moduli of the substrate and deposited layer. This model predicts the deflection of the cantilever as a function of the deposited layer thickness and the residual stress distribution during deposition. The usefulness of these equations is that they are indicative of the real time behavior of the structures, i.e. it predicts the deflection of the beam continuously during deposition process.

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.

FCA 용접의 아크 블로우 모델링 (Modeling of Arc Blow for FCAW)

  • 고성훈
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.202-204
    • /
    • 2004
  • The purpose of this study is to evaluate the effects of welding conditions on the shape of arc of FCAW using high speed camera system. Length and deflection of arc were evaluated from images of arc which were transformed by threshold processing. Based on the experimental results, a regression model for the length of arc was established. A major factor affecting deflection of arc was the length of arc.

  • PDF

마이크로머시닝 기술에 의해 형성된 막에 있어서의 잔류응력 추정 (Estimation of Residual Stresses in Micromachined Films)

  • 민영훈;김용권
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권6호
    • /
    • pp.354-359
    • /
    • 2000
  • A new method of measuring residual stress in micromachined film is proposed. An estimation of residual stress is performed by using least squares fit with an appropriate deflection modeling. an exact value of residual stress is obtained without any of the ambiguities that exist in conventional buckling method, and a good approximation is also obtained by using a few data points. Therefore, the test structures area could be greatly decreased by using this method. The measurement can be done more easily and simply without any actuation or any specific measuring equipment. The structure and fabrication processes described in this paper are simple and widely used in surface micromachining. In addition, in-situ measurement is available by using the proposed method when the test structure and the measurement structure are fabricated on a wafer simultaneously.

  • PDF

Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile

  • Srivastava, Amit;Sivakumar Babu, G.L.
    • Geomechanics and Engineering
    • /
    • 제3권3호
    • /
    • pp.169-188
    • /
    • 2011
  • Response of buried flexible pipe-soil system is studied, through numerical analysis, with respect to deflection and buckling in a spatially varying soil media. In numerical modeling procedure, soil parameters are modeled as two-dimensional non-Gaussian homogeneous random field using Cholesky decomposition technique. Numerical analysis is performed using random field theory combined with finite difference numerical code FLAC 5.0 (2D). Monte Carlo simulations are performed to obtain the statistics, i.e., mean and variance of deflection and circumferential (buckling) stresses of buried flexible pipe-soil system in a spatially varying soil media. Results are compared and discussed in the light of available analytical solutions as well as conventional numerical procedures in which soil parameters are considered as uniformly constant. The statistical information obtained from Monte Carlo simulations is further utilized for the reliability analysis of buried flexible pipe-soil system with respect to deflection and buckling. The results of the reliability analysis clearly demonstrate the influence of extent of variation and spatial correlation structure of soil parameters on the performance assessment of buried flexible pipe-soil systems, which is not well captured in conventional procedures.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정 (Calculation of Deflection Using the Acceleration Data for Concrete Bridges)

  • 윤영균;유희중
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.92-100
    • /
    • 2011
  • 본 연구는 실제 교량에서 차량 주행에 따른 가속도 계측 자료를 이용하여 교량의 고유진동수를 진동 모드별로 파악한 후, 수치 모델링을 통하여 유도된 동적하중에 따른 6차 모드까지의 고유진동수를 고려하여 처짐을 계산할 수 있는 산정식에 관한 것이다. 처짐 계산식은 모드중첩법에 의한 비감쇠 강제진동 이론을 이용하여 교량을 등속도로 이동하는 동적 주행하중에 의해 발생하는 처짐을 계산할 수 있도록 수치 모델링을 하였으며, 이를 검증하고 자동으로 계산할 수 있도록 하였다. 그리고, 제안된 처짐 계산식을 검증하기 위하여 콘크리트 교량을 대상으로 동적재하시험을 실시하여 처짐을 측정하고 이 값을 본 연구의 처짐 계산식의 결과와 비교하여 정확성 및 타당성 검증을 실시하였다. 이 결과, 본 연구에서 제시하는 처짐 계산식은 고유진동수를 고려하는 진동모드의 차수가 낮은 경우에 비교적 정확한 처짐을 예측하며, 주행속도에 따라서는 적용하는 진동 모드 차수에 의하여 처짐 예측의 정확도가 영향을 받는 것을 확인하였다. 그리고, 주행속도가 비교적 빠른 경우에 한하여 본 연구에서 제시하는 처짐 계산식은 진동 모드에 상관없이 비교적 정확하고 신뢰도가 양호한 계산 결과를 얻을 수 있는 것으로 나타났다.