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A model of mechanical behavior of microcantilever due to intrinsic strain during deposition

of MEMS structures is derived. A linear ordinary differential equation is derived for the beam
deflection as a function of the thickness of the deposited layer. Closed-form solutions are not
possible, but numerical solutions are plotted for various dimensionless ratios of the beam

stiffness, the intrinsic strain, and the elastic moduli of the substrate and deposited layer. This

model predicts the deflection of the cantilever as a function of the deposited layer thickness and

the residual stress distribution during deposition. The usefulness of these equations is that they

are indicative of the real time behavior of the structures, i.e. it predicts the deflection of the beam

continuously during deposition process.
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1. Introduction

Micromachined multilayer cantilevers have been
widely used in microelectronics, optical and struc-
tural components (Wu et al.,, 1995; Tien et al.,
1996 ; Kiang et al, 1996). The mechanical re-
sponse of multilayer cantilevers is affected by re-
sidual stresses, which are generated from the fa-
brication process such as physical or chemical
vapor deposition, sputtering and electroplating.
Due to the mismatch between the deposited film
and the substrate, a residual stress is generated,
which subsequently causes a deformation in the
cantilever. For instance, a residual bending mo-
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ment will warp released structures such as can-
tilevers (Mitchell and Hanson, 2002), as shown
in Fig. 1. Thus, residual stresses usually have
deleterious effects in thin film processing, such as
film buckling, warping, blistering, cracking, dela-
mination and void formation. Recently, out-of-
plane microcantilevers under initial bending have
been usefully integrated in many applications,
such as microelastic joints (Yasuda, 1995), micro-
scanners (Schweizer et al., 1999) and microwave
switches (Chang and Chang, 2000).

In order not to use the trials and errors it is
desirable to be able to predict the final shape of
multilayer microcantilevers due to the residual
stresses, especially the intrinsic stress. Attention
has been devoted recently to the analysis of multi-
layer structure under thermal and intrinsic stress.
Hsueh (2002), and Hu and Huang (2004) derived
simple approaches for the closed form solution
in multilayer thin film structure under thermal
influences. Nikishkov (2003) and Nikishkov et

al.(2003) derived the analytical solution and
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Fig. 1 SEM photography of cantilevers with signifi-
cant stress-induced bending

numerical modeling suitable for hinged multi-
layer structure. They accounted for the initial
strain due to the lattice mismatch or thermal load-
ing. However, it is not suitable to predict the real
time behavior of the structure during deposition
process.

This research presents a model of mechanical
behavior of microcantilever due to intrinsic strain
during deposition of MEMS structures. In order
to develop this model the behavior of thin film
structures under the influences of residual stresses
has been understood and analyzed. This model
predicts the deflection of the cantilever as a func-
tion of the thickness of the deposited layer and
the residual stress distribution during deposition.
The usefulness of these equations is that they are
indicative of the real time behavior of the struc-
tures, i.e. it predicts the deflection of the beam
continuousty during deposition process.

2. Theoretical Modeling

2.1 Problem formulation and assumption

Consider a case where in a material that is
different from the substrate is deposited on the
cantilever substrate as shown in Fig. 2. Due to the
mismatch between the deposited film and the sub-
strate, a residual stress is generated, which subse-
quently causes a deformation in the cantilever.
The prismatic beam has constant length L, con-
stant width b, and variable thickness %. The sub-
strate with Young’s modulus of E; is designated
as region | and has a constant thickness %;. The
deposited material with Young’s modulus of E
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Fig. 2 Schematic of the microcantilever

has a variable thickness /2, and h=/h;+ k. Ma-
terial is then deposited on the surface y=h(h>
k1), which causes the beam to bend either up or
down, depending on the sign of the mismatch
strain in the deposited material. The goal of the
present derivation is to obtain an equation for
the beam deflection as a function of % during
deposition.

The input to the problem is the increment of
thickness, d/, i.e. all changes in the configuration
are due only to a changing %. There is no time
dependence, so all rates can be replaced by in-
crements. For example, the increment of bending
stress do can be used instead of the time deriva-
tive do/dt. Brackets are used to denote the func-
tional dependence of variables. For example, the
bending stress 6{x,y ; 4} is a function of x and y
as well as the thickness /. The bending stress and
elastic strain &°{x,v ; z} are relatéd by Hooke’s
law,

o{x,y;h}=E{y}e{x,y; h} (1)
where the Young’s modulus is given by

_ El, Osyghl
E{y}_{Ez, h<y<h

The elastic strain is the sum of the total strain
e{x,y; h} and the mismatch strain e™{x,y}

e{x,y;ht=elx,y; h}+e™{x,y} (2

where the mismatch strain is due to growth pro-
cesses or lattice mismatch between the deposit-
ed material and the deposited surface. The total
strain satisfies the compatibility equations, i.e. it
can be derived by taking the derivatives of a con-
tinuous and single-valued displacement field. In
general, neither the elastic strain nor the mis-
match strain can be obtained from continuous
displacement fields. The total strain obeys the
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Kirchhoff kinematic assumptions of Euler-Ber-
noulli beam theory,

elx,y;hy=—yelx; h}+e{x;h}  (3)

where «{x ; &} is the curvature about the z axis
and € {x ; i} is the strain of the reference layer,
y=0. The increment of total strain is given by

de{x,yv:h}=—vde{x ; h}+de{x:h} 4

The reference value &€* of the mismatch strain is
the mismatch strain that results from deposition
on a strain-free substrate; for example, a flat
substrate that is free of stress. €* is constant, so
de*=0. As material is deposited with non-zero
mismatch strain, both the substrate and the de-
posited layer will bend. Thus, material will be de-
posited on a strained surface with non-zero cur-
vature. This bending strain €*{x,y} on the de-
position surface must be subtracted from £* to
obtain the total mismatch strain,

e"{x,y}=e*—e*{x,y} (5)

The strain £%{x,v} is the value of e{x,y: 4}
evaluated on the deposition surface, y=7, at the
time that the material was deposited. Thus, the
value of €?{x,y} at any point y is equal to €
{x,v; h} evaluated at h=y:

eHx,y)=—ye{x;y}+e{x; v} (6)

The most useful form of the mismatch strain is
obtained by substituting Eq. (6) into Eq. (5) :

e {x,y}=e*—e*{x,y} 7)
=e*+yre{x;v}—e{x;y}

Although the strain e{x,y; 2} at a given point
(x,v) changes as x{x;y} changes with 4, the
strain &?{x,y} is not a function of %, and
de®{x,v}=0. The mismatch strain e™{x,y} is
also constant with respect to %, and de™{x,y}=
0, and it follows from Eq. (2) that

de®{x,y:h}=de{x,v; h} (8)

The elastic strain on the deposition surface is
obtained by substituting Egs. (7) and (3) into
Eq. (2) and evaluating at y=7% to obtain

e{x,h;h}=¢* 9)

2.2 Generalized differential equation for-
mulation

In order to get a relation between the deflection
and the deposit thickness two equilibrium condi-
tions, the moment equilibrium and the horizontal
force equilibrium are considered to formulate a
numerically solvable differential equation. The
equilibrium equations for the moment about the
z axis and the horizontal force in the x direc-
tion provide two equations for the two increments
di{x; k) and de"{x; h}

The moment equilibrium is given by :

dM{x; h}=bfd0{x,y s hYydy
+bho{x,v; h}dh

(10)

where M{x;/} The stress increment is

obtained by substituting Eq. (8) into Eq. (1) :

Ede{x,y:h}, 0<y<hy

dd{x’y;h}:{Ezde{x,y;h}, m<y<h

(11)
The stress on the deposition surface is obtained
by substituting Eq. (9) into Eq. (1) :

o{x,h; hy=FE:,e®{x,h; h}=Ese* (12)

Substitution of Egs. (11}, (12) and (4) into Eq.
(10) yields the moment increment

aM{x: h}=<—%bEzh3—%bh?(El—Ez)>d/c{x;h}
+bEe*hdh (13)
+(%bEzh2+%bh%(El—Ez))def{x )

A similar procedure for the horizontal force equi-
librium yields

0=b "do b hYdy+bolx,h: hYdh

:b/OhE{y}(—ydK{x s h}+de {x; b)) dy+bEe’ dh

(14)
(LB —HE-E) ) dslx: )

+Ewe* dh+ (Eshd + (Ev—E») by) de’ {x ; b}

de™{x ; h} can be eliminated from Egs. (13) and
(14) to obtain the moment increment in terms of
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the curvature increment and the thickness incre-

ment :
dM{x;h}
bE, lef{h}d/f{x h}
(15)
+ﬁg{h}dh
where E=E,/E, and
=+ (E=1) ) (=K —4B°h(E—1)
+612 I (E—1) —4hh(E~1) —h(E—1)?)

g{ht=h+(E-1) k) (B+2hh(E—1)

—h(E—-1))

To derive the beam deflection it is necessary to
introduce the approximate increment of curvature
as

dZ
e dv{x;h} (16)

where v{x ; 4} is the displacement of the beam in

de{x; h}=

the y direction. Since zero moment about the 2
axis, Eq. (16) can be substituted into Eq. (15) to
yield

a2 o 2{h}

g sdv{x;h}=—6e Ty dh (17)
Integrating Eq. (17) twice with respect to x results
in

dv{x:h)}=—3&* g{h) dhx*+cax+c (18)
f{n}

The boundary conditions 0=v{0;k}=d/dx
v{0; %} yield 0=c=c, so that Eq. (18) at the
end of cantilever becomes
dv{L:h} __,_.g{h},,
a3 f{h}L (19)
The non-dimensional form of Eq. (19) is given
by
doin}_ _, &lh}
dh 203

(20)

=h/hy, L=L/l, 5{h}=v{L.h}/ b, s=e*L*
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Eq. (20) is an ordinary linear differential equa-
tion for the non-dimensional end-deflection 7{/%}
as a function of the non-dimensional thickness
h. Unfortunately, Eq. (20) must be numerically
integrated. Fig. 3 shows the numerically solved
beam deflection during deposition for various
values of the non-dimensional parameters s. The
ratio K of Young’s moduli is 168/200, which
corresponds to a silicon substrate and a deposited
layer of Permalloy (Ni/Fe alloy). For a given
ratio of Young’s moduli, the deflection increases
with increasing s (i.e. a larger mismatch strain or
a longer beam). The rate of deflection with the
deposited thickness is decreasing, which indicates
the influence of the intrinsic strain is decreasing

12 T
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hth,
Fig. 3 Deflection during deposition for various val-

ues of the non-dimensional parameters s

Fig. 4 Deflection during deposition for various val-

ues of the Young’s moduli
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as increasing the deposited thickness. Fig. 4 gives
the relation between the beam deflection and the
ratio of Young’s moduli for a given non-dimen-
sional parameters s. As expected, the more com-
pliant substrate (smaller £) results in a greater
deflection.

3. Stress Distribution

It is extremely important to know about the
stress distribution in the cantilever because it
gives an idea where the stresses are maximum. It
also tells which areas are critical and present
potential failure spots. To calculate the stress
distribution it is required to integrate the incre-
mental stress created due to the deposition of each
layer.

The incremental stress due to deposition is
given by Eq. (11). Using Eq. (4), Eq. (11) can be
rewritten as:

do{x,y; h}
={El(—ya’/c{x syitde {x;y)), 0<y<h (21)
Ex(~yde{x;y}+de{x;y)), m<y<h

The incremental reference strain is given by using
Eq. (14) :

:
<h—+E L h’f) del{x; h)—e*dh
de{x; h}= " E=1h (22)
Setting dM {x ; #}=0 in Eq. (15) yields:
di{x: hy=—6e* S 4 (23)

Using Eqs. (22) and (23), Eq. (21) can be rewritten

as .

terin =[BRS, o
where,
N{h}={6e*y%

+(h+(E—1)h1)-'[(h72+ Ez‘ 1 hf)(—6e‘%)—e’ﬂ dh

Consider the case of material with the same
Young’s modulus as the substrate (E=1). In this
case, f{h}=—"5, g{h}="h, and Eq. (24) yields

the incremental stress distribution in case of the
homogeneous deposition :

do{x,y: h}=E1<—66*%+26*%) dh (25)

Integrating Eq. (25) with respect to % and using
the boundary condition,

gives the stress distribution in the cantilever for
homogeneous deposition :

1%“317{( : _%» (26)
m<y<h

o{x,y; h}=2Els*(

Eq. (26) can be rewritten as :

a{x,y‘;h_}=2dl<1n ’?—39( ‘_% ) (27)

1<y<h

where, o1=FE1&*

Figure 5 presents the normalized stress distri-
bution along the non-dimensionalized depth of
the cantilever as a function of the non-dimen-
sionalized deposit thickness. Fig. 6 clearly depicts
the stress distribution’s dependence on the non-
dimensionalized deposit thickness and the Fig. 7
shows the variation of the stress along the depth
of the cantilever beam for various deposit thick-
ness. It is seen that for small deposit thickness the
stress distribution is almost linear.

Fig. 5 A 3D representation of the residual stress in

the cantilever
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Fig. 7 Residual stress plot as a function of y//u

4. Conclusions

This research presents a model of mechanical
behavior of microcantilever due to intrinsic strain
during deposition of MEMS structures. In order
to develop this model the behavior of thin film
structures under the influences of residual stresses
has been understood and analyzed. This model
predicts the deflection of the cantilever as a func-
tion of the thickness of the deposited layer and the
residual stress distribution during deposition. The
usefulness of these equations is that they are in-
dicative of the real time behavior of the structures,
i.e. it predicts the deflection of the beam continu-
ously during deposition process. The results of
the theoretical analyses are listed below :

(1) For a given ratio of Young’s moduli, the
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deflection increases with increasing (i.e. a larger
mismatch strain or longer beam). The more com-
pliant substrate (smaller E) results in a greater
deflection.

(2) The stress distribution plots indicate that
the stress distribution is almost linear along the
depth of the cantilever. If the mismatch strain is
positive then the beam is predominantly under
compression and vice-versa. That is to say that a
tensile deposit will bend the substrate concave
and a compressive stress would bend it convex.

(3) For more accurate prediction of the intrin-
sic strain induced beam deflection during deposi-
tion process, the reference mismatch strain should
be measured by experiment.
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