• Title/Summary/Keyword: Deflection angle

Search Result 298, Processing Time 0.026 seconds

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

Effects of Interactions between the Concrete Deck and Steel Girders on the Dynamic Behavior of Simply Supported Skew Bridges (주형과 상판과의 상호작용이 단순 사교의 동적거동에 미치는 영향)

  • Moon, Seong-Kwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.593-604
    • /
    • 2007
  • Although composite construction has more mechanical advantages compared to noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction may cause large stresses in the bridge deck. In this study, the analytical model considered dynamic behaviors for noncomposite skew bridges was proposed. Using the proposed analytical model, the validity of the application of noncomposite construction to skew bridges was checked. Also, the effects of interactions between the concrete deck and steel girders such as composite construction, partial composite construction, and noncomposite construction on the dynamic characteristics and dynamic behaviors of simply supported skew bridges were investigated. A series of parametric studies for the total 27 skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. Although the slip at the interfaces between the concrete deck and steel girders results in the reduction of seismic total base shear in the transverse direction due to period elongation, it causes an undesirable behavior of skew bridges by the modification in mode shapes and distributions of stiffness. Shear connectors placed by minimum requirements for partial composite action have an effect on reducing the girder stresses and deck stresses; except case of some skew bridges, the magnitude of the girder stresses and deck stresses obtained from partial composite skew bridges is similar to or slightly more than those acquired from composite skew bridges.

The effects of solenoid magnet on plasma extraction in Filtered Vacuum Arc Source (FVAS) (자장여과 아크 소스에서 각 전자석이 플라즈마 인출에 미치는 영향)

  • 김종국;변응선;이구현;조영상
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.431-439
    • /
    • 2001
  • In this paper, the a-Diamond films were synthesized using filtered vacuum arc source (FVAS), FVAS was composed of a torus structure with bending angle of 60 degree. The radius of torus was 266 mm, the radius of plasma duct was 80 mm and the total length was 600 mm. The magnet parts were composed of one permanent magnet and five solenoid magnets. The plasma duct was electrically isolated from the ground so that a bias voltage could be applied. The baffles inside plasma duct were installed in order to prevent the recoil effect of macro-particles. Cathode was made of graphite with 80 mm in diameter. The effects of solenoid magnet on plasma extraction were investigated by computer simulation and experiment using Taguchi's methode. The source and extraction magnet affected the arc stabilization. The extraction beam current was maximized with low value of the source magnet current and high value of the filtering magnet current. The beam current density was 3.2 mA/$\textrm{cm}^2$ and average deposition rate was 5 $\AA$/sec when the currents of arc discharge, source, extraction, bending, deflection and outlet magnet were 30 A, 1 A, 3 A, 5 A, 5 A, and 5 A, respectively. The beam current density and the efficiency of beam transportation were increased with the positive bias voltage of the plasma duct.

  • PDF

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

Experimental Assessment of Bolted Single Lap Joint Strength for Laminates in Advanced Composite Materials (첨단복합재료 적층판의 볼트단일접합 강도 시험적 평가)

  • Lee, Myoung Keon;Lee, Jeong Won;Yoon, Dong Hyun;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.983-989
    • /
    • 2017
  • This paper presents the bearing strength for laminates in advanced composite materials in bolted joints. Bolted single lap joint tests were experimentally investigated with respect to stabilized and unstabilized lap joints. Stabilized bolted single lap joints refer to joints with out-of-plane rotational constraints. Unstabilized bolted single lap joints refer to joints with absence of out-of-plane deflection constraints. The bearing strength values of laminates in the bolted joint showed that the percentages of ply angle for 0, 45, -45, and 90 degrees were not affected. The bearing strength value in the unstabilized bolted joint was smaller than the bearing strength value in the stabilized bolted joint because of the influence of the out-of-plane behavior. The composite material studied in this paper is a carbon/epoxy unidirectional (UD) tape prepreg cured at $177^{\circ}C(350^{\circ}F)$. In the laminate reference system, the standard angles of 0, 45, -45, and 90 degrees were used for ply orientation within the laminate. A total of 112 bolted single lap joint tests were conducted on specimens from eight distinct laminates. The ASTM-D-5961M standards were adhered to for the stabilized and unstabilized bolted single lap joint tests.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE BONE ANCHORED FIXED PROSTHESIS ACCORDING TO THE LOAD CONDITION (골유착 고정성 보철물 하에서 하중조건에 따른 삼차원 유한요소법적 분석)

  • Yang, Soon-Ik;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.780-806
    • /
    • 1995
  • The purpose of this study was to describe the application of 3D finite element analysis to determine resultant stresses on the bone anchored fixed prosthesis, implants and supporting bone of the mandible according to fixture numbers and load conditions. 4 or 6 fixtures and the bone anchored fixed prosthesis were placed in 3D finite element mandibular arch model which represents an actual mandibular skull. A $45^{\circ}$ diagonal load of 10㎏ was labiolingually applied in the center of the prosthesis(P1). A $45^{\circ}$ diagonal load of 20㎏ was buccolingually applied at the location of the 10mm or 20mm cantilever posterior to the most distal implant(P2 or P3). The vertical distribution loads were applied to the superior surfaces of both the right and the left 20mm cantilevers(P4). In order that the boundary conditions of the structure were located to the mandibular ramus and angle, the distal bone plane was to totally fixed to prevent rigid body motion of the entire model. 3D finite element analysis was perfomed for stress distribution and deflection on implants and supporting bone using commercial software(ABAQUS program. for Sun-SPARC Workstation. The results were as follows : 1. In all conditions of load, the hightest tensile stresses were observed at the metal lates of prostheses. 2. The higher tensile stresses were observed at the diagonal loads rather than the vertical loads 3. 6-implants cases were more stable than 4-implants cases for decreasing bending and torque under diagonal load on the anterior of prosthesis. 4. From a biomechanical perspective, high stress developed at the metal plate of cantilever-to-the most distal implant junctions as a consequence of loads applied to the cantilever extension. 5. Under diagonal load on cantilever extension, the 6-implants cases had a tendency to reduce displacement and to increase the reaction force of supporting point due to increasing the bendign stiffness of the prosthesis than 4-implants cases. 6. Under diagonal load on cantilever extension, the case of 10mm long cantilever was more stable than that of 20mm long cnatilever in respect of stress distribution and displacement. 7. When the ends of 10mm or 20mm long cantilever were loaded, the higher tensile stress was observed at the second most distal implant rather than the first most distal implant. 8. The 6-implants cases were more favorable about prevention of screw loosening under repeated loadings because 6-implants cases had smaller deformation and 4-implants cases had larger deformation.

  • PDF

Dynamic Response and Control of Airship with Gust (외란이 작용하는 비행선의 동적 반응 및 제어)

  • Woo, G.A.;Park, I.H.;Oh, S.J.;Cho, K.R.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.69-77
    • /
    • 2002
  • To acquire the dynamic response and design the controller of the airship, the longitudinal motion of the airship with respect to the vertical gust, which is the nonlinear system, was studied. The effects of the apparent mass and moment of the airship delay the dynamic response and the settling time, which are slower than those of conventional airplanes. The current object of the airship is designed to cruise at 500~1000m altitude. At that height, the atmospheric conditions are generally unstable by wind gust. In this paper, it has been studied for the case of vertical gust, since the apparent mass effects are dominant in has been studied for the case of vertical gust, since the apparent mass effects are dominant in that plane. In addition to the study of the dynamic responses of the airship, the controller was designed using the PID-controller. When the gust was applied, airship responses were recovered of equilibrium states. However, it takes too ling time for recovery and the speed of airship is reduced. So, the aim in this paper was to fasten the recovery speed and to get back the cruising velocity. The control parameters were determined from the stability mode analysis, and the control inputs were the thrust and the elevator deflection angle.

An Experimental Study on the Stabilizing Effect of Nails Against Sliding (사면에 설치된 쏘일네일링의 활동억지효과에 대한 실험적 연구)

  • Hong Won-Pyo;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.5-17
    • /
    • 2006
  • In order to investigate the stabilizing effect of nails against sliding, a series of model tests were carried out. The apparatus of model test was designed to perform the model test of soil slope reinforced by nails. The instrumentation system was used to measure the deflection behavior of nails during slope failure. As a result of model tests, the quantity and the occurred position of the maximum bending stress are changed according to the area ratio and the inclination angles of nails. The maximum stabilizing effect against sliding of nails is presented at 0.7$\%$ of the area ratio because the biggest maximum bending stress occurs at this time. But, the stabilizing effect of nails decreases with more than 0.7$\%$ of the area ratio. In the same condition of the area ratio, the stabilizing effect of nails is excellent at -10$^{circ}$ of the inclination angles of nails. The sliding surface can be predicted on the basis of the position of the maximum bending stress in each nails. The shape and depth of sliding surface are changed according to the area ratio and the inclination angles of nails.