• Title/Summary/Keyword: Deflection Rate

Search Result 169, Processing Time 0.032 seconds

The Optimization Of SS-Type Deflection Yoke By Using Genetic Algorithm (유전 알고리즘을 이용한 SS형 편향코일의 형상 최적화)

  • Joo, K.J.;Yoon, I.G.;Kang, B.H.;Joe, M.C.;Hahn, S.Y.;Lee, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.971-973
    • /
    • 1993
  • Deflection Yoke(the following, DY) is the important electric device of CRT which deflects R, G, B beans influencing magnetic field produced by yoke coils. Recently, DY is designed to the saddle/saddle type of coils, being proposed for high-definite and high-efficient CRT. This paper presents the optimization of pin-sectioned saddle coil's shape for minimizing gap between desired and practical deflections of electron beams by using Genetic Algorithm. Evolution Startegy is utilized in this paper, since evolution strategy is a kind of genetic algorithms finding the optimized values by choicing the better generation with comparing the parents and their children. Here, the children are generated by only mutations from the normal random variables. Evolution strategy has shown better powerful converge rate than the other genetic algorithms becuase of using only the mutation-operator.

  • PDF

A Numerical Investigation on Restrained High Strength Q460 Steel Beams Including Creep Effect

  • Wang, Weiyong;Zhang, Linbo;He, Pingzhao
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1497-1507
    • /
    • 2018
  • Most of previous studies on fire resistance of restrained steel beams neglected creep effect due to lack of suitable creep model. This paper presents a finite element model (FEM) for accessing the fire resistance of restrained high strength Q460 steel beams by taking high temperature Norton creep model of steel into consideration. The validation of the established model is verified by comparing the axial force and deflection of restrained beams obtained by finite element analysis with test results. In order to explore the creep effect on fire response of restrained Q460 steel beams, the thermal axial force and deflection of the beams are also analyzed excluding creep effect. Results from comparison infer that creep plays a crucial role in fire response of restrained steel beam and neglecting the effect of creep may lead to unsafe design. A set of parametric studies are accomplished by using the calibrated FEM to evaluate the governed factors influencing fire response of restrained Q460 steel beams. The parametric studies indicate that load level, rotational restraint stiffness, span-depth ratio, heating rate and temperature distribution pattern are key factors in determining fire resistance of restrained Q460 steel beam. A simplified design approach to determine the moment capacity of restrained Q460 steel beams is proposed based on the parametric studies by considering creep effect.

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF

Adaptive Control of CNC Boring Machine by Application of the Variance Perturbation Method (분산 섭동법 에 의한 CNC보오링 머시인 의 적응제어)

  • 이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 1984
  • A recursive parameter estimation method is applied to spindle deflection model during boring process. The spindle infeed rate is then determined to preserve the diametral tolerance of bore. This estimation method is further extended to adaptive control by application of the variance perturbation method. The results of computer simulation attest that the proposed method renders the optimal cutting conditions, maintaining the diametral accuracy of bore, regardless of parameter fluctuations. The proposed method necessitating only post-process measurements features that initialization of parameter guess values in simple, a priori knowledge on parameter variations is not needed and the accurate estimation of optimal spindle infeed rate is obtained, even if the parameter estimation may be poor.

Planarization Uniformity Improvement by a Variable Pressure Type of the Polishing Head with the Thin Rubber Sheet (얇은 고무막 형태의 압력가변 연마헤드를 이용한 웨이퍼 평탄도 개선 방법에 관한 연구)

  • Lee Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, a new polishing head with the variable pressure structure was studied to improve the planarization uniformity of the conventional template-metal head. Metal surface waviness and slurry distribution on the pad have been known to affect the polishing uniformity even in the synchronized quill and platen velocities. A polishing head with silicon rubber sheet was used to get a curved pressure distribution. In the experiment, the vertical deflection behavior on the pad was characterized with back pressure in the air chamber. Quill force increased linearly with backpressure. However, backpressure under a quill force made the upward movements of the quill. In the wafer polishing experiments, polishing rate and polishing thickness distribution were severely changed with backpressure. The best uniformity was observed with the standard deviation off.5% level of average polishing removal 215nm at backpressure 12.1kPa.

Load Carrying Capacity and Deformation Properties of Steel Fiber Reinforced Concrete Slab Model Utilizing Waste Glass by Fine Aggregates (폐유리를 잔골재로 활용한 강섬유보강 슬래브모델의 내력 및 변형률특성)

  • 박승범;김경훈;이봉춘;이준;정명일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.385-390
    • /
    • 2003
  • As growing of industrialization and increasing of population, the quantities of waste glasses are rapidly growing in the earth. It cause some problems such as the waste of natural resources and environmental pollution. In this context, recycling waste glass as a material of concrete has a great advantage environmentally and economically. This study is aimed to investigate the effect of load and deflection on fiber reinforced concrete slab model utilizing waste glass by fine aggregates. The flexural strength of the concrete including waste glass increased considerably, as the inclusion rate of steel fiber were increased. And the first crack load, maximum load and energy absorption capacity increased remarkably as the inclusion rate of steel fiber were increased. Therefore, in this study we confirmed the possibility of application for the usage of waste glass to the steel fiber reinforced concrete.

  • PDF

Analysis of rear suspension using airspring (공기스프링 현가장치 성능해석)

  • Tak, tae-oh;Kim, kum-Chul
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.31-42
    • /
    • 1999
  • This paper presents a method for evaluating the performance of a leaf spring suspension and an air spring suspension systems for trucks in terms of ride and handling. Leaf springs, which generally have non-linear progressive force-deflection characteristics, are modeled using beam and contact elements. The leaf spring analysis model shows good correlation with experimental results. Each component of an air spring suspension system, which is a single leaf, air spring, height control valve, compressor and linkages, is modeled appropriately. Non-linear characteristics of air spring are accounted for using the measured data, and pressure and volume relations for height control system is also considered. The wheel rate of the air suspension is taken lower but roll stiffness is taken higher than those of leaf springs to improve ride and handling performance, which is verified through driving simulations.

  • PDF

Enhancement of Pulsed-Laser Ablation by Phase Explosion of Liquid (액체의 상폭발 과정에 의한 펄스 레이저 용발률의 증진)

  • Kim, Dong-Sik;Lee, Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1483-1491
    • /
    • 2001
  • Enhancement of pulsed-laser ablation by an artificially deposited liquid film is presented. Measurements of ablation rate, ablation threshold, and surface topography arc performed. Correlation between material ablation and photoacoustic effect is examined by the optical beam deflection method. The dependence of ablation rate on liquid-film thickness and chemical composition is also examined. The results indicate that photomechanical effect in the phase explosion of liquid is responsible for the enhanced ablation. The low critical temperature of liquid induces explosive vaporization with localized photoacoustic excitation in the superheat limit and increases the ablation efficiency. Experiments were carried out utilizing a Q-swiched Nd:YAG laser at near-threshold laser fluences with negligible plasma effect (up to ∼100 MW/cm$^2$).

Feed Rate Control for the Head-Feed Thresher (자동탈곡기(自動脱穀機)의 공급율(供給率) 제어(制御)(I) -공급율(供給率)에 따른 부하(負荷) 특성(特性)-)

  • Chung, C.J.;Ryu, K.H.;Choi, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.20-31
    • /
    • 1988
  • This study was undertaken to investigate the load characteristics of the head-feed thresher, which may be affected by various factors such as physical properties of grain, thresher design parameters and its operational condition. The study was conducted at an initial step toward developing an automatic feed-rate control system of the head-feed thresher. A microcomputer-based data acquisition system for the load-speed characteristic of the thresher-shaft and the rail-deflection of the feeding device in accordance with a varied feeding thickness was developed. The sensors being developed and used for sensing the torque and speed of the cylinder and the power-input-shaft and the feeding thickness showed a high accuracy. A microcomputer-based data acquisition system developed in this study was assessed as adequate for a rapid acquisition and analysis of data. The effect of the feed-rate on the torque and speed of the thresher shaft, when fed intermittently by bundles, affected not by the rice varieties but by the dryness of threshing material tested. When fed by the continuous constant thickness, the torque and speed of the cylinder due to the increase of the feed-rate or feeding thickness were given by the relation by the second order parabola.

  • PDF

Regional load deflection rate of multiloop edgewise archwire (Multiloop edgewise arch wire의 부위별 하중변형률)

  • Kim, Byoung-Ho;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.29 no.6 s.77
    • /
    • pp.673-688
    • /
    • 1999
  • This study was conducted in order to analyze the mechanical characteristics of multiloop edgewise archwire (MEAW). The purposes were 1) to compare load deflection rate (LDR) of MEAW with that of various other arch wires in the individual interbracket span, 2) to compare the wire stiffness in the interbracket span with that in the multi-L-loop region (the span from distal border of the bracket of the lateral incisor to the mesial border of the buccal tube of the second molar), and 3) to verify the experimental results with theoretically derived formula. The single L-loops of five different horizontal lengths and multi-L-loops for the upper and lower arches were made out of .$016\times.022$ permachrome stainless steel wire. Straight segment of plain stainless steel, TMA and NiTi wire of the same dimension were prepared. The LDR was measured using Instron model 4466 with the load cell of 50N capacity at cross head speed of 1.0mm/min, and maximum deflection of 1.0mm. Five specimens were tested under each experimental condition. The wire stiffness number for each interbracket region and multi-L-loop region was calculated from the LDR and the interbracket spans. By dividing the theoretical model of multi-L-loop into 35 linear segments, the energy stored in each segment was obtained. Then the LDR and wire stiffness of single L-loop and multi-L-loop were calculated and compared. The findings were as follows : 1) The average LDR of MEAW in the individual interbracket region was 1/1.53 of that of the NiTi,1/2.47 of TMA and 1/5.16 of the plain stainless steel wire. 2) The wire stiffness of MEAW in the multi-L-loop region was 1.53 times larger than that in the interbracket region, and the LDR was almost twice as large as that of NiTi in that region. 3) According to the theoretically derived equation, the wire stiffness of the single L-loop was lower than that of multi-L-loop. The results of this study suggest that MEAW has the unique mechanical Property which could allow individual tooth movement and transmit elastic force effectively through the entire arch wire.

  • PDF