• Title/Summary/Keyword: Deflection Rate

Search Result 169, Processing Time 0.033 seconds

Analysis of the Estimation of the Deflection and Hit Probability of a Gun Barrel of Next Infantry Fighting Vehicle (차기 보병전투장갑차 포신 처짐량 예측 및 명중률 분석)

  • Yoo, Sam-Hyeon;Chung, Dong-Yoon;Oh, Myoung-Ho;Shin, Nae-Ho;Nam, Suk-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • A gun barrel of infantry fighting vehicle is supported like a type of cantilever. Temperature of a gun barrel is increased by heat transfer due to the combustion of propellant charge during the firing. Thus, the muzzle of a gun barrel is deflected in accordance with its temperature and the accuracy rate is decreased by deflection of the muzzle. In this study, deflection of a gun barrel is estimated by measuring its restoration rate because measuring the deflection rate is difficult due to the vibration of the gun barrel during the firing. In order to obtain the relations between deflection rate and restoration rate of the 40mm gun barrel of Next Infantry Fighting Vehicle(NIFV) under varying temperature, measurement of deflection rate and restoration rate is carried out using 5.56mm Remington rifle barrel. Effect of the estimated deflection rate of a gun barrel of NIFV on the hit probability is also analyzed.

Stress Relaxation Properties of Cucumber under Bending Moment (휨 모멘트에 대한 오이의 응력이완(應力弛緩) 특성(特性))

  • Song, C.H.;Kim, M.S.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.262-269
    • /
    • 1993
  • Stress relaxation behaviors of the cucumber under bending moment were tested with UTM at three levels of loading rate and initial deflection ratio. Sample cucumber was selected from three cultivars of cucumber, Cheongjangmadi, Baekdadagi, and Gyeousalicheongjang, because these cultivars are the most popular grown cultivars in Korea. When the bending moment was applied to the cucumber sample, the effective span between simple supports was held a constant value of 116mm with consideration of the selected sample length. The objectives of this study were to develop the rheological models such as linear and nonlinear models of the stress relaxation for the cucumber samples, and to investigate the effects of loading rate and initial deflection ratio on the stress relaxation behavior of the cucumber. The results of this study may be summarized as follows : 1. Stress relaxation behavior of the cucumber could be well described by the generalized Maxwell model for each level of deflection ratio. But the stress relaxation behavior of the sample was found to be initial deflection ratio and time dependent, and it was represented the nonlinear viscoelastic model as a function of initial deflection ratio and time. 2. Stress relaxation behavior of the cucumber samples was very highly affected by the loading rate and the initial deflection ratio. The more loading rate and initial deflection ratio resulted in the more initial bending stress and after stress relaxation progressed more rapidly. 3. At the same test conditions, it was found that the stress relaxation rate of Cheongjangmadi was faster than that of other cultivars.

  • PDF

THE LOAD DEFLECTION RATE OF LOOPED WIRE AND ITS CHANGE BY HEAT TREATMENT (looped wire의 하중변형도와 열처리에 의한 변화)

  • Lee, Yong-Kook
    • The korean journal of orthodontics
    • /
    • v.16 no.1
    • /
    • pp.133-144
    • /
    • 1986
  • This study was conducted to evaluate the effects of loop formation and heat treatment upon the elastic properties of orthodontic wires. The specimens selected were .016', .018', .016x.022', and .018x.022' sized stainless steel (standard) and cobalt-chromium-nickel wires, and were divided into 7 groups as; 1. straight non-heat treated 2. U looped non-heat treated 3. L looped non-heat treated 4. Circle looped non-heat treated 5. U looped heat treated 6. L looped heat treated 7. Circle looped heat treated Heat treatment was performed in Big Jane furnace at 850' F for 3 minutes. The elastic limit and the elastic range of each specimen were determined by bending test, and load deflection rate was computed from those values. The findings were as follows; 1. The formation of loop resulted in increased load-deflection rate for both stainless steel and cobalt-chromium-nickel wires. 2. The heat treated group showed higher load-deflection rate than non-heat treated group, which was more apparent in cobalt-chromiumnickel wire than in stainless steel wire. 3. L loop had the highest load-deflection rate among 3 types of loops, followed by U loop and circle loop. 4. The specimens with greater diameter displayed the more increase in load-deflection rate by looping and heat treatment.

  • PDF

Piezoelectric-Actuated Polydimethylsiloxane(PDMS) Micropump with Diffusers (압전 구동 방식의 Polydimethylsiloxane(PDMS) 마이크로 펌프)

  • 김진호;김영호;김용상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.487-491
    • /
    • 2003
  • The low-cost, simple structured micropump which is actuated by piezoelectric-discs, is fabricated with polydimethylsiloxane (PDMS) and the performances of the micropump, such as pump rate and backpressure, are characterized. The PDMS micropump with diffusers instead of passive check valves as a flow-rectifying element was fabricated. The deflection of glass diaphragm measured by atomic force microscope (AFM) is about 0.4$\mu\textrm{m}$ when applying a 150V square wave voltage at 300Hz across a 300${\mu}\ell$ thick piezoelectric disc. While the square wave driving voltage is applied to the piezoelectric disc of the actuator, the flow rate is measured by fluid displacement variation of the outlet tube. The flow rate of micropump increases with enhancing the applied voltage due to the increase of diaphragm deflection. The flow rate and the backpressure of the micropump with diffusers are about 32.9${\mu}\ell$/min and 173Pa respectively for the above mentioned deflection conditions.

A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves (압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기)

  • Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.

Handling Deflection Limit in Open-Loop-Onset-Point PIO Analysis (Open-Loop-Onset-Point PIO 해석의 변위한계)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • A new treatment is proposed to handle a deflection limit in the open-loop-onset-point (OLOP), which is commonly used in the prediction of pilot in-the-loop oscillation (PIO) due to a rate saturation. The new approach is motivated by the frequency response of a stand-alone actuator in that, unlike the suggestion by the original OLOP procedure, the rate limit onset is not delayed to a higher frequency by a deflection limit. Indeed, if a feedback control loop is closed, the rate limit onset can be shifted to a lower frequency since the controller tends to react with larger commands when deflection limited. The amplitude of the command at this onset frequency is combined with the deflection limit to estimate the associated gain reduction in the open-loop-onset-point in the final step of the OLOP process. The comparison of the new approach with the previous method reveals that an inaccurate optimism which can occur in the previous method is corrected by the proposed treatment.

The Study on Table Deflection by Stationary State and Feedrate at Loaded (하중 적재시 정지상태 및 이송시 하중에 따른 테이블 처짐에 관한 연구)

  • Lee Seung Soo;Kim Min Ju;Kim Soon Kyung;Seo Sang Ha;Jeon Eon Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.41-47
    • /
    • 2004
  • This study is aimed to measure the deflection of loaded table on machine tool. The deflection rate is measured then the table is in a stationary state and is moved. In conclusion we have found that the more load increases, the more the table deflections. Also, we have found that the deflection rate increases in accordance with the speed of movement. Therefore, we have concluded that inspection of machine tool should be done considering the weight of load and the speed of movement. However, since the condition of accuracy test for domestic brand of machine tool is defined as unloaded case, measures should be explored only for loaded case.

Machining Precision according to the Change of Feedrate when Ball Endmilling of Semisphere Shape (볼 엔드밀에 의한 반구 가공시 이송속도 변화에 따른 가공정밀도)

  • 임채열;우정윤;김종업;왕덕현;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.930-933
    • /
    • 2000
  • Experimental study was conducted for finding the characteristics of machining precision according to the change of feedrate when ball endmilling of semisphere shape. The values of tool deflection and cutting force were measured simultaneously by the systems of eddy-current sensor and dynamometer. The machining precision was analyzed by roundness values, which were deeply relating with tool deflection and forces. the roundness was decreased in down-milling than in up-milling for each feedrate. As the cutting edge is moved to radius direction on the tool path, the tool deflection and the cutting force were seemed to be decreased. As the tool path was moved downward, the values of roundness, cutting force and tool deflection were obtained better ones. When compared the values of roundness, cutting force and tool deflection for different feedrate, the best machining accuracy was obtained at feed rate of 90mm/min in down-milling.

  • PDF

Effects of cyclic loading on the long-term deflection of prestressed concrete beams

  • Zhang, Lihai;Mendis, Priyan;Hon, Wong Chon;Fragomeni, Sam;Lam, Nelson;Song, Yilun
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.739-754
    • /
    • 2013
  • Creep and shrinkage have pronounced effects on the long-term deflection of prestressed concrete members. Under repeated loading, the rate of creep in prestressed concrete members is often accelerated. In this paper, an iterative computational procedure based on the well known Model B3 for creep and shrinkage was developed to predict the time-dependent deflection of partially prestressed concrete members. The developed model was validated using the experimental observed deflection behavior of a simply supported partially prestressed concrete beam under repeated loading. The validated model was then employed to make predictions of the long-term deflection of the prestressed beams under a variety of conditions (e.g., water cement ratio, relatively humidity and time at drying). The simulation results demonstrate that ignoring creep and shrinkage could lead to significant underestimation of the long-term deflection of a prestressed concrete member. The model will prove useful in reducing the long-term deflection of the prestressed concrete members via the optimal selection of a concrete mix and prestressing forces.

Influence of Loading on the Corrosion of Reinforcing Bar (철근콘크리트 보의 철근부식에 미치는 하중의 영향에 관한 연구)

  • 김형래;윤상천;지남용
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.171-179
    • /
    • 1999
  • The present research investigated the interaction among loading level, corrosion rate and flexural deflection of reinforced concrete beams. 10cm$\times$15cm$\times$110cm reinforced concrete beams were prepared and subjected to different levels of flexural loading, including 0%, 45% and 75% of the ultimate load. The beams with either a pre-load or a sustained load were also exposed to a laboratory environment with ponding and wetting/drying cycling at room temperature. Half cell potential and galvanized current measurements were taken to monitor corrosion process of reinforcing steel. After corrosion initiation, external current was applied to some of the beams to accelerate corrosion propagation. The beam deflections were recorded during the entire tests. The results indicate that loading level has significant effect on corrosion rate. The beams under a sustained load had much higher corrosion rate than the pre-loaded and then unloaded beams. Significant corrosion may result in an increase in beam deflection and affect serviceability of the structure. The present research may provide an insight into structural condition evaluation and service life predictions of reinforced concrete.