• 제목/요약/키워드: Deflection Model

검색결과 938건 처리시간 0.026초

자율가공 시스템을 위한 가공면 오차보상에 관한 연구 (Study of Machined Surface Error Compensation for Autonomous Manufacturing System)

  • 서태일
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.75-84
    • /
    • 2000
  • The main goal of our research is to compensate the milled surface errors induced by the tool deflection effects, which occur during the milling process. First, we predict cutting forces and tool deflection amount. Based on predicted deflection effects, we model milled surface shapes. We present a compensation methodology , which can generate a new tool trajectory, which is determined so as to compensate the milled surface errors. By considering manufacturing tolerance, tool path compensation is generalized. To validate the approaches proposed in this paper, we treat an illustrative example of profile milling process by using flat end mill. Simulation and experimental results are shown.

  • PDF

고속카메라를 이용한 절삭공구변형의 보상에 관한 연구 (Compensation for Machining Error included by Tool Deflection Using High-Speed Camera)

  • 배종석;김건희;윤길상;서태일
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.15-19
    • /
    • 2007
  • This paper presents an integrated machining error compensation method based on captured images of tool deflection shapes in flat end-milling processes. This approach allows us to avoid modeling machining characteristics (cutting forces, tool deflections and machining errors etc.) and accumulating calculation errors induced by several simulations. For this, a high-speed camera captured images of real deformed tool shapes which were cutting under given machining conditions. Using image processes and a machining error model, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool paths. This corrected tool path can effectively reduce machining errors in the flat end-milling process. Experiments are carried out to validate the approaches proposed in this paper. The proposed error compensation method can be effectively implemented in a real machining situation, producing much smaller errors.

측벽 엔드밀 가공에서 공구 변형을 고려한 형상 오차 예측 (Form Error Prediction in Side Wall Milling Considering Tool Deflection)

  • 류시형;주종남
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.43-51
    • /
    • 2004
  • A method for form error prediction in side wall machining with a flat end mill is suggested. Form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.

Model Development of Flexible Disk Grinding Process

  • Yoo, Song-Min;Choi, Myung-Jin;Kim, Young-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1114-1121
    • /
    • 2000
  • A flexible disk grinding process model was developed based on the dynamic relationship proposed by Kurfess and the influence of the major system parameters which potentially affect the grinding process was studied. Due to the process complexities, several new parameters were assumed to be kinematically dependent on the geometric layouts of the process. Different process stages had been defined depending on the kinematic relationships between the grinding disk and workpiece. A trend of depth of cut was simulated using the proposed model and compared with the empirically measured data in two dimensions. Due to a poor prediction capability of the first model, a modified model was proposed and a better performance has been proved to reveal a closer description of processed surface quality. Also a deflection length has been verified using a different analytical approach.

  • PDF

스트럿-타일 모델을 이용한 반복하중을 받는 철근 콘크리트 보의 전단피로손상거동에 관한 연구 (A Study on the Shear Fatigue Damage Behavior of the Reinforced Concrete Beams Subject to Repeated Loading Using the Strut-Tie Model)

  • 오병환;한승환;유영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.430-435
    • /
    • 1997
  • This paper represents the investigation of the shear fatigue behavior and damage procedure of reinforced concrete beams subject to repeated loading using the strut-tie model. Damage Index is defined as the ratio of deflection at each cycle to the ultimate deflection of inelastic region. Two types of strut-tie model are designed according to the inclined angles of concrete-struts and the consideration of concrete-ties. In one model, aggregate interlock and resistance of uncracked concrete are regarded as the main sheat resisting mechanism and in the other, stirrup is. The results show that the strut-tie model combined with damage index can describe the shear fatigue behavior of RC beams subject to repeated loading effectively.

  • PDF

섬유보강 콘크리트와 보통콘크리트로 합성된 이중 콘크리트 보의 휨 강도 (Flexural Strength of Dual Concrete Beams Composed of Fiber Reinforced Concrete and Normal Concrete)

  • 박대효;부준성;조백순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.579-584
    • /
    • 2001
  • The reinforced concrete(RC) beam is developed cracks because the compression strength of concrete is strong but the tensile strength is weak. The structural strength and stiffness is decreased by reduction of tension resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structure and decrease the tensile flexural cracks and deflection. Therefore, The reinforced concrete used the fiber reinforced concrete at tensile part ensure the safety and serviceability of the concrete structures. In this study, analytical model of a dual concrete beam that is composed of the normal strength concrete at compression part and the high tensile strength concrete at tensile part is developed by using the equilibrium condition of forces and compatibility condition of strains and is parted into elastic analytical model and ultimate analytical model. Three group of test beam that is formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio is tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the reinforced concrete beams have an increase in approximately 30%. In addition, the initial flexural rigidity, as used here, refer to the slope of load-deflection curves in elastic state is increased and the deflection is decreased.

  • PDF

Experimental study on the cable rigidness and static behaviors of AERORail structure

  • Li, Fangyuan;Wu, Peifeng;Liu, Dongjie
    • Steel and Composite Structures
    • /
    • 제12권5호
    • /
    • pp.427-444
    • /
    • 2012
  • This paper presented a new aerial platform-AERORail for rail transport and its structure evolution based on the elastic stiffness of cable; through the analysis on the cable properties when the cable supported a small service load with high-tensile force, summarized the theoretical basis of the AERORail structure and the corresponding simplified analysis model. There were 60 groups of experiments for a single naked cable model under different tensile forces and different services loads, and 48 groups of experiments for the cable with rail combined structure model. The experimental results of deflection characteristics were compared with the theoretical values for these two types of structures under the same conditions. It proved that the results almost met the classical cable theory. The reason is that a small deflection was required when this structure was applied. After the tension increments tests with moving load, it is verified that the relationships between the structure stiffness and tension force and service load are simple. Before further research and applications are made, these results are necessary for the determination of the reasonable and economic tensile force, allowable service load for the special span length for this new platform.

철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향 (Effects of Design on the Dynamic Response of Reinforced Concrete Slabs)

  • 오경윤;조진구;최수명;홍종현
    • 한국농공학회논문집
    • /
    • 제49권6호
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

빙해수조 모형빙판의 유효탄성계수 산출 (The Effective Young's Modulus of Model Ice Sheet in Ice Basin)

  • 이재환;최봉균;김태완;이춘주
    • 대한조선학회논문집
    • /
    • 제52권4호
    • /
    • pp.315-322
    • /
    • 2015
  • In this paper, the theory of rectangular plate on the elastic foundation is used to get the relation equation between the effective Young’s modulus and the ice sheet deflection by applying the characteristic length concept, since the model ice sheet is rectangular shape in KRISO (Korea Research Institute for Ships and Ocean Engineering) ice basin. The obtained relation equation is equal to that of using the circular plate theory. A device is made and used to measure the deflection of ice plate using LVDT (Linear Variable Differential Transformer) for several loading cases and the procedure of experiments measuring the deflection used for getting the Young’s modulus is explained. In addition, the flexural strength value obtained through flexural strength experiments is compared with that of finite element analysis using the obtained effective Young’s modulus. Also, a nonlinear FEA (Finite Element Analysis) of cantilever ice beam is done with eroding effect and LS-DYNA result shows the fracture of brittle ice under 1 mm/s velocity load.

천측 항법 시스템의 수직 방향 결정 (Determination of Local Vortical in Celestial Navigation Systems)

  • 석병석;유준
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.