• Title/Summary/Keyword: Defense Industrial Technology

Search Result 554, Processing Time 0.024 seconds

Proteomic changes in leaves of sorghum exposed to copper stress in sorghum

  • Roy, Swapan Kumar;Kwon, Soo Jeong;Cho, Seong-Woo;Kamal, Abu Hena Mostafa;Kim, Sang-Woo;Sarker, Kabita;Jeong, Hae-Ryong;Lee, Moon-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.128-128
    • /
    • 2017
  • Copper (Cu) is very toxic to plant cells due to its inhibitory effects on many physiological and biochemical processes. In spite of its potential physiological and economic significance, molecular characterization after Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was executed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth of shoots was markedly reduced, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and $150{\mu}M$) of $CuSO_4$. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (${\geq}1.5-fold$) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (${\geq}1.5-fold$) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, a total of 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense, and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in $C_4$ plants. The over-expression of GAPDH plays a significant role in assisting Sorghum bicolor to attenuate the adverse effects of oxidative stress caused by Cu, and the proteins involved in resistance to stress helped the sorghum plants to tolerate high levels of Cu.

  • PDF

Position Control of Dual Redundant Asymmetric Tandem Electro-Hydrostatic Actuator for Aircraft based on Backstepping Technique (백스테핑 기법을 이용한 항공기용 이중화 비대칭형 직렬 전기-정유압 구동기의 위치제어)

  • Kim, Daeyeon;Park, Hyung Jun;Kim, Sang Seok;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • The electro-hydrostatic actuators (EHA) are widely used in various industrial fields since they can independently execute the function of the hydraulic power source and have high efficiency. Particularly, in the aviation field, the EHA is mainly designed as dual redundant asymmetric tandem actuator to mitigate failure and minimize installation space. However, aviation EHAs designed in the form of dual redundant asymmetric tandem actuator have the disadvantage of decreased durability performance due to the occurrence of force fighting. In this paper, the controller is designed based on backstepping technique to improve control performance and reduce force fighting for aviation EHA. The augmented state observer is proposed to estimate the states required for control. Through simulation, it was verified that the proposed controller had superior control performance and significantly reduces the force fighting compared to the general PI controller.

Study on security framework for cyber-hacking control facilities (제어시설 사이버공격 대응을 위한 사이버보안 프레임워크 (Framework) 연구)

  • Lee, Sang-Do;Shin, Yongtae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.4
    • /
    • pp.285-296
    • /
    • 2018
  • Among many hacking attempts carried out in the past few years, the cyber-attacks that could have caused a national-level disaster were the attacks against nuclear facilities including nuclear power plants. The most typical one was the Stuxnet attack against Iranian nuclear facility and the cyber threat targeting one of the facilities operated by Korea Hydro and Nuclear Power Co., Ltd (Republic of Korea; ROK). Although the latter was just a threat, it made many Korean people anxious while the former showed that the operation of nuclear plant can be actually stopped by direct cyber-attacks. After these incidents, the possibility of cyber-attacks against industrial control systems has become a reality and the security for these systems has been tightened based on the idea that the operations by network-isolated systems are no longer safe from the cyber terrorism. The ROK government has established a realistic control systems defense concept and in the US, the relevant authorities have set up several security frameworks to prepare for the threats. This paper presented various cyber security attack cases and their scenarios against control systems, along with the analysis of countermeasures for them. Though this task, we attempt to identify the items that need to be considered when designing a domestic security framework to improve security and secure stability.

Phase Behaviors of the GAP/PTMG Polyurethanes Chain Extended with 3-Azidopropane-1,2-Diol (3-Azidopropane-1,2-diol로 쇄연장된 GAP/PTMG 폴리우레탄의 상거동)

  • Kim, Hyoung-Sug;You, Jong-Sung;Kweon, Jung-Ohk;Kim, Jung-Su;Lee, Tong-Sun;Noh, Si-Tae;Jang, Young-Ok;Kim, Dong-Kuk;Kwon, Sun-Kil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.377-384
    • /
    • 2010
  • We perform a comparative study to investigate the properties of the new energetic chain extender (AzPD). A series of poly(glycidyl azide)/poly(tetramethylene oxide)-based energetic segmented polyurethane (GAP/PTMG ESPU) with different chain extender, which is 3-azidopropane-1,2-diol (AzPD), 1,4-butane diol (1,4-BD), or 1,5 pentane diol (1,5-PD), was synthesized by solution polymerization in dimethyl formamide (DMF) and their phase behaviors were investigated. The ESPUs were characterized with Fourier transform infrared-attenuated total reflection spectroscopy (ATR FT-IR), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results of the ATR FT-IR analysis of the urethane carbonyl group region showed that the 'free' C=O fraction was higher in GAP/PTMG AzESPU (0.5) than GAP/PTMG BDESPU (0.44) and GAP/PTMG PDESPU (0.41) for 7 days samples after preparation and that it was similar in the range of 0.26~0.29 for three 60 days ESPU samples. DMA curves of the GAP/PTMG AzESPU for 7 days samples showed amorphous polymers, but GAP/PTMG BDESPU and GAP/PTMG PDESPU showed viscoelastic behaviors with rubbery plateau and the flow region. However, DMA curves of the GAP/PTMG AzESPU for 60 days samples showed viscoelastic behaviors with rubbery plateau and the flow region like GAP/PTMG PDESPU, but GAP/PTMG BDESPU did not show the flow region. From phase behaviors with ATR FT-IR, DSC and DMA analysis, GAP/PTMG AzESPU showed good phase-mixing between components. However, it represented viscoelastic behavior of TPE similar to GAP/PTMG PDESPM according to phase equilibrium progress with aging time.