• Title/Summary/Keyword: Defense Artificial Intelligence

Search Result 128, Processing Time 0.025 seconds

Two Circle-based Aircraft Head-on Reinforcement Learning Technique using Curriculum (커리큘럼을 이용한 투서클 기반 항공기 헤드온 공중 교전 강화학습 기법 연구)

  • Insu Hwang;Jungho Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.352-360
    • /
    • 2023
  • Recently, AI pilots using reinforcement learning are developing to a level that is more flexible than rule-based methods and can replace human pilots. In this paper, a curriculum was used to help head-on combat with reinforcement learning. It is not easy to learn head-on with a reinforcement learning method without a curriculum, but in this paper, through the two circle-based head-on air combat learning technique, ownship gradually increase the difficulty and become good at head-on combat. On the two-circle, the ATA angle between the ownship and target gradually increased and the AA angle gradually decreased while learning was conducted. By performing reinforcement learning with and w/o curriculum, it was engaged with the rule-based model. And as the win ratio of the curriculum based model increased to close to 100 %, it was confirmed that the performance was superior.

Top-Level Implementation of AI4SE, SE4AI for the AI-SE convergence in the Defense Acquisition (무기체계 획득에서 인공지능-시스템엔지니어링 융화를 위한 최상위 수준의 AI4SE, SE4AI 구현방안)

  • Min Woo Lee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Artificial Intelligence (AI) is a prominent topic in almost every field. In Korea, Systems Engineering (SE) procedures are applied in Defense Acquisition, and it is anticipated that SE procedures will also be applied to systems incorporating AI capabilities. This study explores the applicability of the concepts "AI4SE (AI for SE)" and "SE4AI (SE for AI)," which have been proposed in the United States, to the Korean context. The research examines the feasibility of applying these concepts, identifies necessary tasks, and proposes implementation strategies. For the AI4SE, many attempts and studies applying AI to SE Processes both Requirements & Architectures Define, System implementation & V&V, and Sustainment. It needs Explainability and Security. For the SE4AI, the Functional AI implementation level, Quality & Security of the Data-set, AI Ethics, and Review policies are needed. Furthermore, it provides perspectives on how these two concepts should ultimately converge and suggests future directions for development.

Feedforward Input Signal Generation for MIMO Nonminimum Phase Autonomous System Using Iterative Learning Method (반복학습에 의한 MIMO Nonminimum Phase 자율주행 System의 Feedforward 입력신호 생성에 관한 연구)

  • Kim, Kyongsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.204-210
    • /
    • 2018
  • As the 4th industrial revolution and artificial intelligence technology develop, it is expected that there will be a revolutionary changes in the security robot. However, artificial intelligence system requires enormous hardwares for tremendous computing loads, and there are many challenges that need to be addressed more technologically. This paper introduces precise tracking control technique of autonomous system that need to move repetitive paths for security purpose. The input feedforward signal is generated by using the inverse based iterative learning control theory for the 2 input 2 output nonminimum-phase system which was difficult to overcome by the conventional feedback control system. The simulation results of the input signal generation and precision tracking of given path corresponding to the repetition rate of extreme, such as bandwidth of the system, shows the efficacy of suggested techniques and possibility to be used in military security purposes.

A Study on Defense Robot Combat Concepts Using Fourth Industrial Revolution Technologies

  • Sang-Hyuk Park;Jae-Geon Lee;Moo-Chun Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.249-253
    • /
    • 2024
  • The ultimate purpose of this study is as follows: The current primary concern in the defense sector revolves around how to strategically utilize Fourth Industrial Revolution technologies in combat. The Fourth Industrial Revolution denotes a shift towards an environment where automation and connectivity are maximized, driven by technologies such as artificial intelligence. Coined by Klaus Schwab in the 2015 Davos Forum, this term highlights the significant role of machine learning and artificial intelligence. Particularly, the military application of Fourth Industrial Revolution technologies is expected to be actively researched and implemented. Combat involves military actions between units, typically conducted as part of a larger war, with units striving to achieve one or more objectives. The concept of combat refers to the fundamental ideas of how units should engage with the enemy, both presently and in future scenarios, to achieve assigned objectives.

An Empirical Study on the Prediction of Future New Defense Technologies in Artificial Intelligence (인공지능 분야 국방 미래 신기술 예측에 관한 실증연구)

  • Ahn, Jin-Woo;Noh, Sang-Woo;Kim, Tae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.458-465
    • /
    • 2020
  • Technological advances in artificial intelligence are affecting many industries, such as telecommunications, logistics, security, and healthcare, and research and development related to economic, efficiency, linkage with commercial technologies are the current focus. Predicting the changes in the future battlefield environment and ways of conducting war from a strategic point of view, as well as designing/planning the direction of military development for a leading response is not only a basic element to prepare for comprehensive future threats but also an indispensable factor that can produce an optimal effect over a limited budget/time. From this perspective, this study was conducted as part of a technology-driven plan to discover potential future technologies with high potential for use in the defense field and apply them to R&D. In this study, based on research data collected in a defense future technology investigation, the future new technology that requires further research was predicted by considering the redundancy with existing defense research projects and the feasibility of technology. In addition, an empirical study was conducted to verify the significance between the future new defense technology and the evaluation indicators in the AI field.

Structure and expression of legal principles for artificial intelligence lawyers (인공지능 변호사를 위한 법리의 구조화와 그 표현)

  • Park, Bongcheol
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.1 no.1
    • /
    • pp.61-79
    • /
    • 2021
  • In order to implement an artificial intelligence lawyer, this study looked at how to structure legal principles, and then gave specific examples of how structured legal principles can be expressed in predicate logic. While previous studies suggested a method of introducing predicate logic for the reasoning engine of artificial intelligence lawyers, this study focused on the method of expressing legal principles with predicate logic based on the structural appearance of legal principles. Jurisprudence was limited to the content of articles and precedents, and the vertical hierarchy leading to 'law facts - legal requirements - legal effect' and the horizontal hierarchy leading to 'legal effect - defense - defense' were examined. In addition, legal facts were classified and explained that most of the legal facts can be usually expressed in unary or binary predicates. In future research, we plan to program the legal principle expressed in predicate logic and realize an inference engine for artificial intelligence lawyers.

Multi-objective Optimization Model for C-UAS Sensor Placement in Air Base (공군기지의 C-UAS 센서 배치를 위한 다목적 최적화 모델)

  • Shin, Minchul;Choi, Seonjoo;Park, Jongho;Oh, Sangyoon;Jeong, Chanki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Recently, there are an increased the number of reports on the misuse or malicious use of an UAS. Thus, many researchers are studying on defense schemes for UAS by developing or improving C-UAS sensor technology. However, the wrong placement of sensors may lead to a defense failure since the proper placement of sensors is critical for UAS defense. In this study, a multi-object optimization model for C-UAS sensor placement in an air base is proposed. To address the issue, we define two objective functions: the intersection ratio of interested area and the minimum detection range and try to find the optimized placement of sensors that maximizes the two functions. C-UAS placement model is designed using a NSGA-II algorithm, and through experiments and analyses the possibility of its optimization is verified.

Bayesian Game Theoretic Model for Evasive AI Malware Detection in IoT

  • Jun-Won Ho
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.41-47
    • /
    • 2024
  • In this paper, we deal with a game theoretic problem to explore interactions between evasive Artificial Intelligence (AI) malware and detectors in Internet of Things (IoT). Evasive AI malware is defined as malware having capability of eluding detection by exploiting artificial intelligence such as machine learning and deep leaning. Detectors are defined as IoT devices participating in detection of evasive AI malware in IoT. They can be separated into two groups such that one group of detectors can be armed with detection capability powered by AI, the other group cannot be armed with it. Evasive AI malware can take three strategies of Non-attack, Non-AI attack, AI attack. To cope with these strategies of evasive AI malware, detector can adopt three strategies of Non-defense, Non-AI defense, AI defense. We formulate a Bayesian game theoretic model with these strategies employed by evasive AI malware and detector. We derive pure strategy Bayesian Nash Equilibria in a single stage game from the formulated Bayesian game theoretic model. Our devised work is useful in the sense that it can be used as a basic game theoretic model for developing AI malware detection schemes.

A Study on the Informatization and Intelligent Strategy of Education and Training based on 4th Industrial Revolution Technology (4 산업혁명 기술 기반 교육훈련 정보화 및 지능화 전략)

  • Lee, Hee Nam
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.67-79
    • /
    • 2021
  • The advent of the 4th Industrial Revolution is also causing many changes in defense operations. Defense reform and the fourth industrial revolution promoted smart defense innovation, and attempts are being made to incorporate cutting-edge science and technology into various fields such as weapons systems and defense operations. Education and training is one of the areas in which information and intelligence are urgently needed in the spirit of defense operations. Due to the nature of defense education and training, which aims to fight against the enemy, there is no emphasis on psychological training in the field rather than informatization, but in developed countries with various experiences of modern warfare, investment and vitalization of education and training are vital. Through this, efforts are being made to foster soldiers with problem-solving skills in uncertain battlefields. The informatization and intelligence of defense education and training is no longer a matter that can be delayed, and the innovation of education and training using cutting-edge science and technology can be said to be an age-old task to improve the results of education and training in the fourth industrial revolution. The purpose of this is because the application of related technologies is not the goal itself as the 4th Industrial Revolution arrives, but it has been made possible through the rapid advancement of science and technology that has made it difficult to realize education and training, even though it has long been desired. Ultimately, education and training data will be integrated and artificial intelligence-based intelligent learning systems will maximize the performance of education and training, thereby improving the combat readiness.

A Study on the Assessment of Critical Assets Considering the Dependence of Defense Mission (국방 임무 종속성을 고려한 핵심 자산 도출 방안 연구)

  • Kim Joon Seok;Euom Ieck Chae
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.189-200
    • /
    • 2024
  • In recent years, the development of defense technology has become digital with the introduction of advanced assets such as drones equipped with artificial intelligence. These assets are integrated with modern information technologies such as industrial IoT, artificial intelligence, and cloud computing to promote innovation in the defense domain. However, the convergence of the technology is increasing the possibility of transfer of cyber threats, which is emerging as a problem of increasing the vulnerability of defense assets. While the current cybersecurity methodologies focus on the vulnerability of a single asset, interworking of various military assets is necessary to perform the mission. Therefore, this paper recognizes these problems and presents a mission-based asset management and evaluation methodology. It aims to strengthen cyber security in the defense sector by identifying assets that are important for mission execution and analyzing vulnerabilities in terms of cyber security. In this paper, we propose a method of classifying mission dependencies through linkage analysis between functions and assets to perform a mission, and identifying and classifying assets that affect the mission. In addition, a case study of identifying key assets was conducted through an attack scenario.