• Title/Summary/Keyword: Defaunation

Search Result 16, Processing Time 0.017 seconds

Practical Application of Defaunation of Cattle on Farms in Vietnam: Response of Young Cattle Fed Rice Straw and Grass to a Single Drench of Groundnut Oil

  • Nguyen, Thi Hong Nhan;Nguyen, Van Hon;Nguyen, Trong Ngu;Nguyen, Tien Von;Preston, T.R.;Leng, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.485-490
    • /
    • 2001
  • Farmers in the centre of Vietnam have a tradition of dosing young cattle with groundnut oil before fattening them on a diet of rice straw and road-side grass. These farmers claim the cattle grow faster. It was hypothesized that the effect of the oil could be to eliminate the protozoa from the rumen. This is known to increase the net microbial growth efficiency in the rumen and increase the protein supply to the animal. To test this hypothesis, two experiments were undertaken; one on-station with four cattle fitted with rumen cannulae and the second a growth trial with 25 young cattle in smallholder farms. When the cannulated animals were drenched with groundnut oil, the protozoa were eliminated from the rumen and animals could be kept free of protozoa by isolation. The ammonia concentration in the rumen fluid was decreased when the protozoa were eliminated and there was an indication of improved rumen dry matter degradability of the forage components of the diet. In the practical condition on the smallholder farms, the growth rates of cattle drenched with groundnut oil were increased considerably (65%) compared with untreated control animals. The laboratory results when taken together with the on-farm results indicate that these resource-poor farmers had been able to defaunate their cattle and to maintain the fauna-free state by isolation of their animals from extraneous stock. This traditional practice in Central Vietnam, whereby one family keeps only one or two animals that are hand fed and tethered, has quite a large potential for all of those countries where animals are fed agro-industrial by-products, as it is highly economic. The use of 1 litre of oil compared with 1 kg of rice polishing per day (300 kg over 300 days), would be highly profitable in all countries of South-East Asia.

Short Review of Global Methane Situation and of Facilities to Reduce in Ruminants in Third Wol1d Countries

  • Islam, M.R.;Begum, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.157-163
    • /
    • 1997
  • This paper analyses a number of important areas relating to methane production in ruminants, consequent hazards and different methods of reducing this gas. Clearly methane not only affects on the environment but also on the economy of animal production. Several factors including feed, species, microbes, rumen environment, etc. are responsible for methane production in animals. Although methane production can be reduced by chemical manipulation, defaunation and strategic feeding, the latter was found to be effective because the method is easier to follow than the others. Furthermore, feeding technology could play an important role in reducing methane production particularly in developing countries because of its relative cost effectiveness. however, it needs to compare to what extent it could reduce methane production as well as cost of animal production. Therefore, research program needs to be concentrated on the appropriate feeding system to reduce methane production, consequently pollution and cost of production particularly in developing countries.

Increasing the Flow of Protein from Ruminal Fermentation - Review -

  • Wallace, R.J.;Newbold, C.J.;Bequette, B.J.;MacRae, J.C.;Lobley, G.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.885-893
    • /
    • 2001
  • This review summarizes some recent research into ways of improving the productivity of ruminal fermentation by increasing protein flow from the rumen and decreasing the breakdown of protein that results from the action of ruminal microorganisms. Proteinases derived from the plant seem to be of importance to the overall process of proteolysis in grazing animals. Thus, altering the expression of proteinases in grasses may be a way of improving their nutritive value for ruminants. Inhibiting rumen microbial activity in ammonia formation remains an important objective: new ways of inhibiting peptide and amino acid breakdown are described. Rumen protozoa cause much of the bacterial protein turnover which occurs in the rumen. The major impact of defaunation on N recycling in the sheep rumen is described. Alternatively, if the efficiency of microbial protein synthesis can be increased by judicious addition of certain individual amino acids, protein flow from ruminal fermentation may be increased. Proline may be a key amino acid for non-cellulolytic bacteria, while phenylalanine is important for cellulolytic species. Inhibiting rumen wall tissue breakdown appears to be an important mechanism by which the antibiotic, flavomycin, improves N retention in ruminants. A role for Fusobacterium necrophorum seems likely, and alternative methods for its regulation are required, since growth-promoting antibiotics will soon be banned in many countries.

Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants

  • Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.61 no.3
    • /
    • pp.122-137
    • /
    • 2019
  • Methane, one of the important greenhouse gas, has a higher global warming potential than that of carbon dioxide. Agriculture, especially livestock, is considered as the biggest sector in producing anthropogenic methane. Among livestock, ruminants are the highest emitters of enteric methane. Methanogenesis, a continuous process in the rumen, carried out by archaea either with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to methane or with methylotrophic pathway, which the substrate for methanogenesis is methyl groups. For accurate estimation of methane from ruminants, three methods have been successfully used in various experiments under different environmental conditions such as respiration chamber, sulfur hexafluoride tracer technique, and the automated head-chamber or GreenFeed system. Methane production and emission from ruminants are increasing day by day with an increase of ruminants which help to meet up the nutrient demands of the increasing human population throughout the world. Several mitigation strategies have been taken separately for methane abatement from ruminant productions such as animal intervention, diet selection, dietary feed additives, probiotics, defaunation, supplementation of fats, oils, organic acids, plant secondary metabolites, etc. However, sustainable mitigation strategies are not established yet. A cumulative approach of accurate enteric methane measurement and existing mitigation strategies with more focusing on the biological reduction of methane emission by direct-fed microbials could be the sustainable methane mitigation approaches.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Energy Metabolism and Methane Production in Faunated and Defaunated Sheep Fed Two Diets with Same Concentrate to Roughage Ratio (70:30) but Varying in Composition

  • Chandramoni, Chandramoni;Jadhao, S.B.;Tiwad, C.M.;Haque, N.;Murarilal, Murarilal;Khan, M.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1238-1244
    • /
    • 2001
  • Two calorimetric experiments were performed to investigate the effects of two diets with same concentrate: roughage ratio (70:30) but varying in composition on energy metabolism and methane production in faunated (F) and defaunated (DF) Muzaffarnagari sheep. For experiment I, ten animals were divided equally into two groups of which one was kept normally F as such while other was DF using 10% sodium lauryl sulphate. All the animals were offered diet I which comprised of oat hay and concentrate mixture I (CM I) containing maize grain (93%) as a major ingredient in 70:30 ratio. Similarly, the experiment II was conducted for which four F and four DF sheep (same as used for experiment I) were switched to diet II that consisted of maize hay and CM II (maize grain 59% + molasses 36%). Through diet II, DM intake in DF sheep was significantly (p<0.05) lower. Intake of GE through both the diets was similar in F and DF sheep. Digestibility of DM, OM, CP and GE and also metabolisability (ME/GE) was similar in F and DF sheep on both the diets. Total urinary energy loss did not differ in F and DF on both the diets, but methane energy loss as a percent of GE in DF was significantly (p<0.05) lower on diet I (3.75 vs 2.48), while it did not differ on diet II (3.20 vs 3.60). Heat production was significantly (p<0.01) reduced in DF on both the diets. Although, efficiency of utilisation of ME for maintenance calculated as per ARC (1984) did not differ in F and DF on both the diets, efficiency for maintenance and growth was higher (0.60 vs 0.672) on diet I in DF. It was inferred that methane production in DF sheep reduces on good quality hay-based diet supplemented with slowly fermentable carbohydrate (maize grain) but supplementation of molasses (rapidly fermentable CHO) nullify this effect when sheep were fed diets with concentrate: roughage ratio of 70:30.