• Title/Summary/Keyword: Default Risk Prediction

Search Result 16, Processing Time 0.032 seconds

Predicting Default of Construction Companies Using Bayesian Probabilistic Approach (베이지안 확률적 접근법을 이용한 건설업체 부도 예측에 관한 연구)

  • Hong, Sungmoon;Hwang, Jaeyeon;Kwon, Taewhan;Kim, Juhyung;Kim, Jaejun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.13-21
    • /
    • 2016
  • Insolvency of construction companies that play the role of main contractors can lead to clients' losses due to non-fulfillment of construction contracts, and it can have negative effects on the financial soundness of construction companies and suppliers. The construction industry has the cash flow financial characteristic of receiving a project and getting payment based on the progress of the construction. As such, insolvency during project progress can lead to financial losses, which is why the prediction of construction companies is so important. The prediction of insolvency of Korean construction companies are often made through the KMV model from the KMV (Kealhofer McQuown and Vasicek) Company developed in the U.S. during the early 90s, but this model is insufficient in predicting construction companies because it was developed based on credit risk assessment of general companies and banks. In addition, the predictive performance of KMV value's insolvency probability is continuously being questioned due to lack of number of analyzed companies and data. Therefore, in order to resolve such issues, the Bayesian Probabilistic Approach is to be combined with the existing insolvency predictive probability model. This is because if the Prior Probability of Bayesian statistics can be appropriately predicted, reliable Posterior Probability can be predicted through ensured conditionality on the evidence despite the lack of data. Thus, this study is to measure the Expected Default Frequency (EDF) by utilizing the Bayesian Probabilistic Approach with the existing insolvency predictive probability model and predict the accuracy by comparing the result with the EDF of the existing model.

Development Study of a Predictive Model for the Possibility of Collection Delinquent Health Insurance Contributions (체납된 건강보험료 징수 가능성 예측모형 개발 연구)

  • Young-Kyoon Na
    • Health Policy and Management
    • /
    • v.33 no.4
    • /
    • pp.450-456
    • /
    • 2023
  • Background: This study aims to develop a "Predictive Model for the Possibility of Collection Delinquent Health Insurance Contributions" for the National Health Insurance Service to enhance administrative efficiency in protecting and collecting contributions from livelihood-type defaulters. Additionally, it aims to establish customized collection management strategies based on individuals' ability to pay health insurance contributions. Methods: Firstly, to develop the "Predictive Model for the Possibility of Collection Delinquent Health Insurance Contributions," a series of processes including (1) analysis of defaulter characteristics, (2) model estimation and performance evaluation, and (3) model derivation will be conducted. Secondly, using the predictions from the model, individuals will be categorized into four types based on their payment ability and livelihood status, and collection strategies will be provided for each type. Results: Firstly, the regression equation of the prediction model is as follows: phat = exp (0.4729 + 0.0392 × gender + 0.00894 × age + 0.000563 × total income - 0.2849 × low-income type enrollee - 0.2271 × delinquency frequency + 0.9714 × delinquency action + 0.0851 × reduction) / [1 + exp (0.4729 + 0.0392 × gender + 0.00894 × age + 0.000563 × total income - 0.2849 × low-income type enrollee - 0.2271 × delinquency frequency + 0.9714 × delinquency action + 0.0851 × reduction)]. The prediction performance is an accuracy of 86.0%, sensitivity of 87.0%, and specificity of 84.8%. Secondly, individuals were categorized into four types based on livelihood status and payment ability. Particularly, the "support needed group," which comprises those with low payment ability and low-income type enrollee, suggests enhancing contribution relief and support policies. On the other hand, the "high-risk group," which comprises those without livelihood type and low payment ability, suggests implementing stricter default handling to improve collection rates. Conclusion: Upon examining the regression equation of the prediction model, it is evident that individuals with lower income levels and a history of past defaults have a lower probability of payment. This implies that defaults occur among those without the ability to bear the burden of health insurance contributions, leading to long-term defaults. Social insurance operates on the principles of mandatory participation and burden based on the ability to pay. Therefore, it is necessary to develop policies that consider individuals' ability to pay, such as transitioning livelihood-type defaulters to medical assistance or reducing insurance contribution burdens.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Prediction of Potential Risk Posed by a Military Gunnery Range after Flood Control Reservoir Construction (홍수조절지 건설 후 사격장 주변지역의 위해성예측 사례연구)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Nam, Kyoung-Phile;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • Risk assessment was carried out in order to improve the remediation and management strategy on a contaminated gunnery site, where a flood control reservoir is under construction nearby. Six chemicals, including explosive chemicals and heavy metals, which were suspected to possess risk to humans by leaching events from the site were the target pollutants for the assessment. A site-specific conceptual site model was constructed based on effective, reasonable exposure pathways to avoid any overestimation of the risk. Also, conservative default values were adapted to prevent underestimation of the risk when site-specific values were not available. The risks of the six contaminants were calculated by API's Decision Support System for Exposure and Risk Assessment with several assumptions. In the crater-formed-area(Ac), the non-carcinogenic risks(i.e., HI values) of TNT(Tri-Nitro-Toluene) and Cd were slightly larger than 1, and for RDX(Royal Demolition Explosives), over 50. The total non-carcinogenic risk of the whole gunnery range calculated to a significantly high value of 62.5. Carcinogenicity of Cd was estimated to be about $10^{-3}$, while that of Pb was about $5\;{\times}\;10^{-4}$, which greatly exceeded the generally acceptable carcinogenic risk level of $10^{-4}{\sim}10^{-6}$. The risk assessment results suggest that an immediate remediation practice for both carcinogens and non-carcinogens are required before the reservoir construction. However, for more accurate risk assessment, more specific estimations on condition shifts due to the construction of the reservoir are required, and more over, the effects of the pollutants to the ecosystem is also necessary to be evaluated.

Statistical Analysis of Extreme Values of Financial Ratios (재무비율의 극단치에 대한 통계적 분석)

  • Joo, Jihwan
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.247-268
    • /
    • 2021
  • Investors mainly use PER and PBR among financial ratios for valuation and investment decision-making. I conduct an analysis of two basic financial ratios from a statistical perspective. Financial ratios contain key accounting numbers which reflect firm fundamentals and are useful for valuation or risk analysis such as enterprise credit evaluation and default prediction. The distribution of financial data tends to be extremely heavy-tailed, and PER and PBR show exceedingly high level of kurtosis and their extreme cases often contain significant information on financial risk. In this respect, Extreme Value Theory is required to fit its right tail more precisely. I introduce not only GPD but exGPD. GPD is conventionally preferred model in Extreme Value Theory and exGPD is log-transformed distribution of GPD. exGPD has recently proposed as an alternative of GPD(Lee and Kim, 2019). First, I conduct a simulation for comparing performances of the two distributions using the goodness of fit measures and the estimation of 90-99% percentiles. I also conduct an empirical analysis of Information Technology firms in Korea. Finally, exGPD shows better performance especially for PBR, suggesting that exGPD could be an alternative for GPD for the analysis of financial ratios.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.