• Title/Summary/Keyword: Deepstacking

Search Result 7, Processing Time 0.009 seconds

Effects of Molasses Addition and(or) Pelleting on Nutritional Characteristics of Broiler Litter Processed by Ensiling or Deepstacking and Palatability Improvement by 'Hanwoo' During the Adjustment Period (육계분 혐기 또는 퇴적 발효 사료 제조 시 당밀 첨가 및 펠렛화가 사료영양적 가치 및 사료 적응기의 한우 기호성 개선에 미치는 영향)

  • Kwak, W. S.;Park, J. M.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.87-100
    • /
    • 2003
  • This study was conducted in order to determine a proper level of molasses addition through the analysis of changes in appearance, nutritive and silage parameters before and after ensiling or deepstacking of broiler litter, to evaluate the effect of pelleting processed broiler litter and to develop methods to enhance palatability of broiler litter and reduce the adjustment period by ‘Hanwoo’ steers. Molasses addition was effective in ensiling and deepstacking of broiler litter and the proper addition level was about 5%. Changes in nutritive values of broiler litter by ensiling and deepstacking with or without molasses treatment were not great. Adding 5% molasses at deepstacking of broiler litter did not affect(P<0.05) in vitro digestion of dry matter and organic matter. Pelleting of broiler litter resulted in significant(P<0.05) moisture evaporation, organic matter reduction and nearly threefold increase of bulk density. Pelleting or molasses addition of broiler litter improved palatability by ‘Hanwoo’ steers and reduced the adjustment period by half(8-9 d).

Effects of Barley Malt Sprouts Addition and Processing Methods on Ruminant Feed and Nutritional Properties of Broiler Litter (맥아근 첨가와 가공처리방법이 육계분 발효물의 반추동물 사료영양적 특성에 미치는 영향)

  • 곽완섭;정근기
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.35-44
    • /
    • 2003
  • This study was conducted to determine effects of and a proper level of barley malt sprouts(BMS) addition as well as to develop an effective fermentation method when broiler litter(BL) was ensiled or deepstacked with 0 to 10% levels of BMS. Mixtures were ensiled or deepstacked for one month and physico-chemical analyses were made between before and after treatments. Addition of BMS up to 10% enhanced nutritional quality of either of ensiled or deepstacked BL mixtures. Especially, the quantity and quality of protein were improved with the addition of BMS to BL. However, the still high pH values after ensiling of various mixtures indicated that anaerobic fermentation did not effectively occur with the addition of up to 10% of BMS to BL and consideration of fermentation aids appeared to be necessary. For deepstacking, addition of BMS to BL increased internal peak temperature(from 56 to $70^{\circ}C$) of the stack, indicating that the added BMS to BL stimulated the degradative activity of fermentative microorganisms. The deepstacking method was more effective than the ensiling method for the manufacture of hygienical fred mixture with BL and BMS.

  • PDF

Effects of Cellulolytic Microbes Inoculation During Deep Stacking of Spent Mushroom Substrates on Cellulolytic Enzyme Activity and Nutrients Utilization by Sheep (버섯부산물 퇴적발효 시 섬유소 분해균 접종이 섬유소 분해성 효소 활력과 면양의 영양소 이용성에 미치는 영향)

  • Kim, Y.I.;Jun, S.H.;Yang, S.Y.;Huh, J.W;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.667-676
    • /
    • 2007
  • This study was conducted to determine effects of cellulolytic microbes inoculation to sawdust-based spent mushroom substrate(SMS) during deepstacking on fermentation parameters, total microbial counts and cellulolytic enzyme activity and to on SMS nutrients utilization by sheep. For sheep metabolism trials, six sheep(ram, average 54.8kg) were fed a Control diet(70% concentrates, 15% rice straw and 15% SMS with no microbial treatment on a dry basis) and a Treatment diet(the same diet including SMS with a microbial treatment) for 2 trials. Spent mushroom substrates with or without a microbial(4 strains including 1 strain of Enterobacter ludwigii, 1 strain of Bacillus cereus and 2 strains of Bacillus subtillis) treatment (1% of SMS on wet basis) were deepstacked for 7 days. The internal temperatures in 1.2 M/T of SMS deepstacks reached to 50±5℃ within 7 days of storage. Total microbial counts remarkably decreased (P<0.05) with a deepstacking process and were not affected(P>0.05) by the microbial treatment. For fibrolytic enzyme activity, CMCase and xylanase activities were decreased(P<0.05) by a deepstacking process. After deepstacking, the microbial treatment showed about 2.5-times higher(P<0.05) for CMCase activity and about 4-times higher(P<0.05) for xylanase activity than those of the Control. Activities of ligninolytic enzymes such as laccase and MnP were not affected by the microbial treatment. The sheep fed the microbially treated SMS diet had a tendency of greater total tract digestibilities of ash(P=0.051), NFE (P=0.071), hemicellulose(P=0.087) and NDF(P=0.096) than those fed the untreated SMS diet. Nitrogen balance of sheep was not affected(P>0.05) by feeding of microbially treated SMS. Accordingly, these results indicate that cellulolytic microbes inoculation during deepstacking of SMS may improve the bio- utilization of SMS by sheep.

Effects of Manufacturing Methods of Broiler Litter and Bakery By-product Ration for Ruminants on Physico-chemical Properties (육계분과 제과부산물을 이용한 반추가축용 완전혼합사료(TMR) 제조 시 가공처리 방법이 물리화학적 특성에 미치는 영향)

  • Kwak, W.S.;Yoon, J.S.;Jung, K.K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.593-606
    • /
    • 2003
  • This study was conducted to develop effective manufacturing methods of a total mixed ration(TMR) composed of broiler litter(BL) and bakery by-product(BB) for ruminants. Five experiments included a small-scaled manufacture of TMR using a deepstacking method(Exp. 1), its pelletization(Exp. 2), its field-scaled manufacture(Exp. 3), a field-scaled manufacture using an ensiling method(Exp. 4), and a mixing process of deepstacked BL and BB prior to feeding(Exp. 5). BL and BB were mixed at a ratio which makes total digestible nutrients of the TMR 69%. For each experiment, temperature, appearance and physico-chemical properties were recorded and analyzed. The chemical composition data revealed that the mixture of BL and BB showed nutritionally additive balance which resulted from a considerable increase(P<0.05) of organic matter and a desirable decrease(P<0.05) of protein and fiber up to the requirement level for growing ‘Hanwoo’ steers. Deepstacking of BL and BB in Exp. 1 and 3 resulted in a sufficient increase of stack temperature for pasteurization, little chemical losses, appearance of white fungi on the surface, and partial charring due to excess stack temperature. For Exp. 2, its pelleting, which was successful using a simple, small-scaled pelletizer, resulted in a little loss(P<0.05) of organic matter and an increase(P<0.05) of indigestible protein(ADF-CP). Ensiling the mixture in Exp. 4 made little effect on chemical composition; however, one month of the ensiling period was not enough for favorable silage parameters. Deepstacking BL alone in Exp. 5 tended(P<0.1) to decrease true protein : NPN ratio and hemicellulose content and increase ADF-CP content due to the heat damage occurred. Deepstacking or ensiling of BL-BB mixtures and simple incorporating of BB into deepstacked BL prior to feeding could be practical and nutrients-preservative methods in TMR manufacture for beef cattle, although ensiling needed further hygienic evaluation.

Evaluation on Ruminant Feed Value of Cage Broiler Excreta Processed by a Deepstacking Method (퇴적발효한 케이지 육계생분의 반추동물 사료적 가치 평가)

  • 곽완섭;박종문;김연호;강준석;김영일;김원경
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.113-122
    • /
    • 2003
  • This on­farm study was conducted to evaluate the effect of feeding deepstacked broiler excreta­saw dust­rice hulls(DBSR) pellets on feed intake, production and economy of growing Hanwoo steers and Holstein bulls. Formulated mix and rice straw were replaced at 16% and 48% levels for growing Hanwoo steers(6 wk of feeding period) and at 4% and 18% levels for Holstein bulls(12 wk) with DBSR pellets. Control and treated diets were formulated to be isoenergetic and DBSR pellets were fed ad libitum. Palatability of DBSR pellets turned out to be favorable. Compared with the control group, feeding DBSR pellets did not affect body weight gain, average daily gain and feed efficiency(P>0.05). Feed cost per gain was reduced by 18.5% for Hanwoo steers and 3.5% for Holstein bulls. Feeding DBSR pellets to Holstein bulls did not affect carcass weight and grades of meat yield and quality. These results indicate that deepstacked cage broiler excreta mixture may be effectively used as a feed ingredient for growing ruminants.

  • PDF

Feed Hygiene and Meat Safety of Cattle Fed Processed Rice Hulls-bedded Broiler Litter

  • Kwak, W.S.;Huh, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1509-1517
    • /
    • 2004
  • A study was conducted to determine the safety of feeding processed broiler litter (BL) to beef cattle. The litter was processed by deepstacking, ensiling and composting. The health issues addressed relevant to the safety of feeding litter included pathogenic bacteria, mycotoxins, heavy metals, medicinal drugs and pesticide residues. Exp. 1 evaluated the feed hygiene of processed rice hulls-bedded BL. The presence of pathogenic bacteria in BL was determined before and after deepstacking. A total of 21 BL samples were collected over a 3-year period of commercial and experimental production of BL for beef cattle. Exp. 2 evaluated the safety of meat of cattle fed deepstacked BL. In Exp. 1, there were no pathogenic bacteria, such as coliform, E. coli, E. coli O157:H7, Salmonella, Listeria and Proteus, in deepstacked BL. Levels of heavy metals (Cu, Fe, Mn and Zn) and toxic heavy metals (As, Pb, Cd and Hg) were lower than the commercial feed tolerances. Aflatoxin, medicinal drug and pesticide residues were detected at extremely low levels. In Exp. 2, the meat of the BL-fed animals exhibited few differences in all analyzed items from that of the control group, showing safety from pathogenic microorganisms and heavy metals. When BL was withdrawn for 14 days prior to slaughtering the BLfed cattle, no medicinal drug residues were detected in the meat. Pesticides in the tissues of either group of animals were much lower than the tolerances. In conclusion, processed rice hulls-bedded BL and the meat of cattle fed BL were safe from the potential hazards of pathogenic bacteria, heavy metals, aflatoxin, medicinal drugs and pesticide residues.

Digestion and Nitrogen Utilization by Sheep Fed Diets Supplemented with Processed Broiler Litter

  • Kwak, W.S.;Fontenot, J.P.;Herbein, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1634-1641
    • /
    • 2003
  • In vivo digestion and metabolism trials were conducted with 10 wethers equipped with ruminal, abomasal, and ileal cannulae to evaluate digestion of ensiled broiler litter (EBL), deepstacked broiler litter (DBL), and composted broiler litter (CBL). Wethers were fed a low protein (6.3% CP) basal diet alone or supplemented to 10.3% CP with EBL, DBL, CBL or soybean meal (SBM). All diets were formulated to be isoenergetic (56% TDN, DM basis). Apparent digestibilities of DM, OM, and ADF were not affected (p<0.05) by diet, but digestibility of CP was improved (p<0.05) by N supplementation. Apparent digestibility of CP was lower (p<0.05) for diets supplemented with CBL and DBL than for diets supplemented with SBM and EBL. Ruminal $NH_3$ concentration was 20 to 24 mg/dl at 2 h after feeding litter-supplemented diets compared with 13 mg/dl for SBM. Abomasal N, $NH_3$ N, and nonammonia N flows were increased (p<0.05) by N supplementation, whereas microbial N flow was not influenced (p<0.05) by diet. Compared with SBM and EBL, undegraded dietary CP flow to the abomasum tended to be greater (p<0.1) when wethers were fed DBL and CBLsupplemented diets. Retention of N (g/d) also was greater (p<0.05) due to greater (p<0.05) N intake and lower (p<0.05) urinary N excretion when wethers were fed diets supplemented with litter (especially EBL) vs. SBM. Overall, characteristics of ruminal fermentation and digestion indicated that broiler litter N was utilized efficiently by wethers, but ensiling may be preferable to deepstacking or composting.