After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.
최근 Tensorflow나 Pytorch, Keras 같은 여러가지의 딥러닝 프레임워크 모델들이 나왔다. 또한 이미지 인식에 Tensorflow, Pytorch, Keras 같은 프레임 워크를 이용하여 CNN(Convolutional Neural Network)을 적용시켜 이미지 분류에서의 최적화 모델을 주로 이용한다. 본 논문에서는 딥러닝 이미지 인식분야에서 가장 많이 사용하고 있는 파이토치와 텐서플로우의 프레임 워크를 CNN모델에 학습을 시킨 결과를 토대로 두 프레임 워크를 비교 분석하여 이미지 분석할 때 최적화 된 프레임워크를 도출하였다.
최근 기계학습의 발달로 인공지능을 구현하는 머신러닝과 딥러닝 같은 기술이 많은 관심을 받고 있다. 본 논문에서는 딥러닝 기반의 R-CNN을 이용한 바이너리 악성코드를 이미지화 하고 이미지에서 특징을 추출해 패밀리를 분류한다. 본 논문에서는 딥러닝에서 두 단계를 이용해 악성코드를 CNN을 이용해 이미지화하고, 악성코드의 패밀리가 갖는 특징을 R-CNN을 이용해 분류함으로 악성코드를 이미지화하여 특징을 분류하고 패밀리를 분류한 후 악성코드의 진화를 자동 분류한다. 제안 기법은 검출율이 93.4%로 우수한 탐지 성능을 보였고 정확도는 98.6%로 매우 높은 성능을 보였다. 또한 악성코드를 이미지화 하는 CNN 처리속도가 23.3ms, 하나의 샘플을 분류하기 위해서 R-CNN처리 속도는 4ms로 비교적 빠르게 악성코드를 판별하고 분류가 가능함을 실험을 통해 증명하였다.
인공지능, 빅데이터, 자율주행 등 4차 산업혁명시대를 이끄는 핵심기술은 컴퓨팅 파워의 급속한 발전과 사물인터넷에 기반한 초연결 네트워크를 통해 구현되고 서비스된다. 본 논문에서는 자율주행을 위한 기본적인 기능으로 다양한 환경에서도 정확하게 주행가능한 영역을 인식하여 추출하는 인공지능 딥러닝 모델들을 구현하고, 그 결과를 비교, 분석한다. 주행가능한 영역을 추출하는 딥러닝 모델은 영상 분할 분야에서 성능이 우수하고 자율주행 연구에서 많이 사용하는 Deep Lab V3+와 Mask R-CNN을 활용하였다. 다양한 환경에서의 주행 정보를 위해 여러 가지 날씨 조건과 주 야간 환경에서의 주행 영상 및 이미지를 제공하는 BDD 데이터셋을 학습데이터로 사용하였다. 활용한 모델들의 실험 결과, DeepLab V3+는 48.97%의 IoU를 보였으며, Mask R-CNN은 68.33%의 IoU로 더 우수한 성능을 보였다. 또한, 구현한 모델로 추출된 주행가능 영역을 이미지에 표시하여 육안으로 검사한 결과, Mask R-CNN은 83%, Deep Lab V3+는 69% 정확도로 Mask R-CNN이 Deep Lab V3+ 보다 주행가능한 영역을 추출하는 분야에서는 더 성능이 높은 것으로 확인하였다.
A detector-based approach shows the limited performances for the defect inspections such as shallow fine cracks and indistinguishable defects from background. Deep learning technique is widely used for object recognition and it's applications to detect defects have been gradually attempted. Deep learning requires huge scale of learning data, but acquisition of data can be limited in some industrial application. The possibility of applying CNN which is one of the deep learning approaches for surface defect inspection is investigated for industrial parts whose detection difficulty is challenging and learning data is not sufficient. VOV is adopted for pre-processing and to obtain a resonable number of ROIs for a data augmentation. Then CNN method is applied for the classification. Three CNN networks, AlexNet, VGGNet, and mofified VGGNet are compared for experiments of defects detection.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4214-4230
/
2020
This paper introduces a pilot allocation scheme for massive MIMO systems based on deep convolutional neural network (CNN) learning. This work is an extension of a prior work on the basic deep learning framework of the pilot assignment problem, the application of which to a high-user density nature is difficult owing to the factorial increase in both input features and output layers. To solve this problem, by adopting the advantages of CNN in learning image data, we design input features that represent users' locations in all the cells as image data with a two-dimensional fixed-size matrix. Furthermore, using a sorting mechanism for applying proper rule, we construct output layers with a linear space complexity according to the number of users. We also develop a theoretical framework for the network capacity model of the massive MIMO systems and apply it to the training process. Finally, we implement the proposed deep CNN-based pilot assignment scheme using a commercial vanilla CNN, which takes into account shift invariant characteristics. Through extensive simulation, we demonstrate that the proposed work realizes about a 98% theoretical upper-bound performance and an elapsed time of 0.842 ms with low complexity in the case of a high-user-density condition.
Over the past several years, deep learning has been widely used for feature extraction in image and video for various applications such as object classification and facial recognition. This paper introduces an implantation of embedded Linux system for embossed digits recognition using CNN based deep learning methods. For this purpose, we implemented a coin recognition system based on deep learning with the Keras open source library on Raspberry PI. The performance evaluation has been made with the success rate of coin classification using the images captured with ultra-wide angle camera on Raspberry PI. The simulation result shows 98% of the success rate on average.
This paper proposes a battery remaining useful life (RUL) prediction method using a deep learning-based EMD-CNN-LSTM hybrid method. The proposed method pre-processes capacity data by applying empirical mode decomposition (EMD) and predicts the remaining useful life using CNN-LSTM. CNN-LSTM is a hybrid method that combines convolution neural network (CNN), which analyzes spatial features, and long short term memory (LSTM), which is a deep learning technique that processes time series data analysis. The performance of the proposed remaining useful life prediction method is verified using the battery aging experiment data provided by the NASA Ames Prognostics Center of Excellence and shows higher accuracy than does the conventional method.
인간이 가진 뛰어난 능력 중의 하나인 곡 분류 과정을 딥러닝 알고리즘을 통해 구현하는 연구는 단일데이터를 이용한 유니모달 모델, 멀티모달 모델, 뮤직비디오를 이용한 멀티모달 방식 등이 있다. 이 연구에서는 곡의 스펙트로그램을 짧은 샘플들로 분할하여 각각을 CNN으로 분석한 뒤 그 결과를 투표하는 시스템을 제안하여 더 좋은 결과를 얻었다. 딥러닝 알고리즘 중 CNN이 RNN에 비해 음악 장르 구분에 있어 우수한 성능을 보였으며 CNN과 RNN을 같이 적용했을 때 성능이 좋아짐을 알 수 있었다. 음악샘플을 나누어 각각의 CNN 결과를 투표하는 시스템이 이전 모델에 비해 좋은 결과를 나타내었고 이 모델에 Softmax 레이어를 추가한 모델이 가장 좋은 성능을 보였다. 디지털 미디어의 폭발적인 성장과 수많은 스트리밍 서비스 속에서 음악장르의 자동분류에 대한 필요는 점점 증가하고 있는 추세이다. 향후 연구에서는 미분류 곡의 비율을 낮추고 최종적으로 미분류된 곡들의 장르구분에 대한 알고리즘을 개발할 필요가 있을 것이다.
본 논문에서는 다양한 구조의 딥 뉴럴 네트워크를 소리 이벤트 검출을 위하여 적용하였으며 공통의 오디오 데이터베이스를 이용하여 그들 간의 성능을 비교하였다. FNN, CNN, RNN 그리고 CRNN이 주어진 오디오데이터베이스 및 딥 뉴럴 네트워크의 구조에 최적화된 하이퍼파라미터 값을 이용하여 구현되었다. 구현된 방식 중에서 CRNN이 모든 테스트 환경에서 가장 좋은 성능을 보였으며 그 다음으로 CNN의 성능이 우수함을 알 수 있었다. RNN은 오디오 신호에서의 시간 상관관계를 잘 추적하는 장점에도 불구하고 CNN 과 CRNN에 비해서 저조한 성능을 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.