• 제목/요약/키워드: Deep-learning algorithm

검색결과 1,188건 처리시간 0.023초

BM3D and Deep Image Prior based Denoising for the Defense against Adversarial Attacks on Malware Detection Networks

  • Sandra, Kumi;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • 제10권3호
    • /
    • pp.163-171
    • /
    • 2021
  • Recently, Machine Learning-based visualization approaches have been proposed to combat the problem of malware detection. Unfortunately, these techniques are exposed to Adversarial examples. Adversarial examples are noises which can deceive the deep learning based malware detection network such that the malware becomes unrecognizable. To address the shortcomings of these approaches, we present Block-matching and 3D filtering (BM3D) algorithm and deep image prior based denoising technique to defend against adversarial examples on visualization-based malware detection systems. The BM3D based denoising method eliminates most of the adversarial noise. After that the deep image prior based denoising removes the remaining subtle noise. Experimental results on the MS BIG malware dataset and benign samples show that the proposed denoising based defense recovers the performance of the adversarial attacked CNN model for malware detection to some extent.

Courses Recommendation Algorithm Based On Performance Prediction In E-Learning

  • Koffi, Dagou Dangui Augustin Sylvain Legrand;Ouattara, Nouho;Mambe, Digrais Moise;Oumtanaga, Souleymane;ADJE, Assohoun
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.148-157
    • /
    • 2021
  • The effectiveness of recommendation systems depends on the performance of the algorithms with which these systems are designed. The quality of the algorithms themselves depends on the quality of the strategies with which they were designed. These strategies differ from author to author. Thus, designing a good recommendation system means implementing the good strategies. It's in this context that several research works have been proposed on various strategies applied to algorithms to meet the needs of recommendations. Researchers are trying indefinitely to address this objective of seeking the qualities of recommendation algorithms. In this paper, we propose a new algorithm for recommending learning items. Learner performance predictions and collaborative recommendation methods are used as strategies for this algorithm. The proposed performance prediction model is based on convolutional neural networks (CNN). The results of the performance predictions are used by the proposed recommendation algorithm. The results of the predictions obtained show the efficiency of Deep Learning compared to the k-nearest neighbor (k-NN) algorithm. The proposed recommendation algorithm improves the recommendations of the learners' learning items. This algorithm also has the particularity of dissuading learning items in the learner's profile that are deemed inadequate for his or her training.

다차원 데이터에 대한 심층 군집 네트워크의 성능향상 방법 (Performance Improvement of Deep Clustering Networks for Multi Dimensional Data)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.952-959
    • /
    • 2018
  • Clustering is one of the most fundamental algorithms in machine learning. The performance of clustering is affected by the distribution of data, and when there are more data or more dimensions, the performance is degraded. For this reason, we use a stacked auto encoder, one of the deep learning algorithms, to reduce the dimension of data which generate a feature vector that best represents the input data. We use k-means, which is a famous algorithm, as a clustering. Sine the feature vector which reduced dimensions are also multi dimensional, we use the Euclidean distance as well as the cosine similarity to increase the performance which calculating the similarity between the center of the cluster and the data as a vector. A deep clustering networks combining a stacked auto encoder and k-means re-trains the networks when the k-means result changes. When re-training the networks, the loss function of the stacked auto encoder and the loss function of the k-means are combined to improve the performance and the stability of the network. Experiments of benchmark image ad document dataset empirically validated the power of the proposed algorithm.

Deep Reinforcement Learning based Tourism Experience Path Finding

  • Kyung-Hee Park;Juntae Kim
    • Journal of Platform Technology
    • /
    • 제11권6호
    • /
    • pp.21-27
    • /
    • 2023
  • In this paper, we introduce a reinforcement learning-based algorithm for personalized tourist path recommendations. The algorithm employs a reinforcement learning agent to explore tourist regions and identify optimal paths that are expected to enhance tourism experiences. The concept of tourism experience is defined through points of interest (POI) located along tourist paths within the tourist area. These metrics are quantified through aggregated evaluation scores derived from reviews submitted by past visitors. In the experimental setup, the foundational learning model used to find tour paths is the Deep Q-Network (DQN). Despite the limited availability of historical tourist behavior data, the agent adeptly learns travel paths by incorporating preference scores of tourist POIs and spatial information of the travel area.

  • PDF

딥 러닝을 이용한 버그 담당자 자동 배정 연구 (Study on Automatic Bug Triage using Deep Learning)

  • 이선로;김혜민;이찬근;이기성
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1156-1164
    • /
    • 2017
  • 기존의 버그 담당자 자동 배정 연구들은 대부분 기계학습 알고리즘을 기반으로 예측 시스템을 구축하는 방식이었다. 따라서, 고성능의 기계학습 모델을 적용하는 것이 담당자 자동 배정 시스템 성능의 핵심이 된다고 할 수 있으며 관련 연구에서는 높은 성능을 보이는 SVM, Naive Bayes 등의 기계학습 모델들이 주로 사용되고 있다. 본 논문에서는 기계학습 분야에서 최근 좋은 성능을 보이고 있는 딥 러닝을 버그 담당자 자동 배정에 적용하고 그 성능을 평가한다. 실험 결과, 딥 러닝 기반 Bug Triage 시스템이 활성 개발자 대상 실험에서 48%의 정확도를 달성했으며 이는 기존의 기계학습 대비 최대 69%향상된 결과이다.

A New Bank-card Number Identification Algorithm Based on Convolutional Deep Learning Neural Network

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.47-56
    • /
    • 2022
  • Recently bank card number recognition plays an important role in improving payment efficiency. In this paper we propose a new bank-card number identification algorithm. The proposed algorithm consists of three modules which include edge detection, candidate region generation, and recognition. The module of 'edge detection' is used to obtain the possible digital region. The module of 'candidate region generation' has the role to expand the length of the digital region to obtain the candidate card number regions, i.e. to obtain the final bank card number location. And the module of 'recognition' has Convolutional deep learning Neural Network (CNN) to identify the final bank card numbers. Experimental results show that the identification rate of the proposed algorithm is 95% for the card numbers, which shows 20% better than that of conventional algorithm or method.

멀티 파티 시스템에서 딥러닝을 위한 프라이버시 보존 기술 (Privacy Preserving Techniques for Deep Learning in Multi-Party System)

  • 고혜경
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.647-654
    • /
    • 2023
  • 딥러닝은 이미지, 텍스트와 같이 복잡한 데이터를 분류 및 인식하는데 유용한 방법으로 딥러닝 기법의 정확도는 딥러닝이 인터넷상의 AI 기반의 서비스를 유용하게 하는데 기초가 되었다. 그러나 딥러닝에서 훈련에 사용되는 방대한 양의 사용자 데이터는 사생활 침해 문제를 야기하였고 사진이나 보이스와 같이 사용자이 개인적이고 민감한 데이터를 수집한 기업들이 데이터들을 무기한으로 소유한다. 사용자들은 자신의 데이터를 삭제할 수 없고 사용되는 목적도 제한할 수 없다. 예를 들면, 환자 진료기록에 대한 딥러닝 기술을 적용하기 원하는 의료기관들과 같은 데이터소유자들은 사생활과 기밀유지 문제로 환자의 데이터를 공유할 수 없고 딥러닝 기술의 혜택을 받기 어렵다. 우리는 멀티 파티 시스템에서 다수의 작업자들이 입력 데이터집합을 공유하지 않고 신경망 모델을 공동으로 사용할 수 있는 프라이버시 보존 기술을 적용한 딥러닝 방법을 설계한다. 변형된 확률적 경사 하강에 기초한 최적화 알고리즘을 이용하여 하위 집합을 선택적으로 공유할 수 있는 방법을 이용하였고 결과적으로 개인정보를 보호하면서 학습 정확도를 증가시킨 학습을 할 수 있도록 하였다.

Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning

  • Hyun Jung Koo;June-Goo Lee;Ji Yeon Ko;Gaeun Lee;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • 제21권6호
    • /
    • pp.660-669
    • /
    • 2020
  • Objective: To evaluate the accuracy of a deep learning-based automated segmentation of the left ventricle (LV) myocardium using cardiac CT. Materials and Methods: To develop a fully automated algorithm, 100 subjects with coronary artery disease were randomly selected as a development set (50 training / 20 validation / 30 internal test). An experienced cardiac radiologist generated the manual segmentation of the development set. The trained model was evaluated using 1000 validation set generated by an experienced technician. Visual assessment was performed to compare the manual and automatic segmentations. In a quantitative analysis, sensitivity and specificity were calculated according to the number of pixels where two three-dimensional masks of the manual and deep learning segmentations overlapped. Similarity indices, such as the Dice similarity coefficient (DSC), were used to evaluate the margin of each segmented masks. Results: The sensitivity and specificity of automated segmentation for each segment (1-16 segments) were high (85.5-100.0%). The DSC was 88.3 ± 6.2%. Among randomly selected 100 cases, all manual segmentation and deep learning masks for visual analysis were classified as very accurate to mostly accurate and there were no inaccurate cases (manual vs. deep learning: very accurate, 31 vs. 53; accurate, 64 vs. 39; mostly accurate, 15 vs. 8). The number of very accurate cases for deep learning masks was greater than that for manually segmented masks. Conclusion: We present deep learning-based automatic segmentation of the LV myocardium and the results are comparable to manual segmentation data with high sensitivity, specificity, and high similarity scores.

한국어 음성을 이용한 연령 분류 딥러닝 알고리즘 기술 개발 (Development of Age Classification Deep Learning Algorithm Using Korean Speech)

  • 소순원;유승민;김주영;안현준;조백환;육순현;김인영
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권2호
    • /
    • pp.63-68
    • /
    • 2018
  • In modern society, speech recognition technology is emerging as an important technology for identification in electronic commerce, forensics, law enforcement, and other systems. In this study, we aim to develop an age classification algorithm for extracting only MFCC(Mel Frequency Cepstral Coefficient) expressing the characteristics of speech in Korean and applying it to deep learning technology. The algorithm for extracting the 13th order MFCC from Korean data and constructing a data set, and using the artificial intelligence algorithm, deep artificial neural network, to classify males in their 20s, 30s, and 50s, and females in their 20s, 40s, and 50s. finally, our model confirmed the classification accuracy of 78.6% and 71.9% for males and females, respectively.

딥러닝을 이용한 외부 조도 아래에서의 시인성 향상 알고리즘 (Algorithm for Improving Visibility under Ambient Lighting Using Deep Learning)

  • 이희진;송병철
    • 방송공학회논문지
    • /
    • 제27권5호
    • /
    • pp.808-811
    • /
    • 2022
  • 강한 외부 조도 아래에서의 디스플레이는 인간의 인지 시스템에 의해, 실제보다 더 어둡게 인지된다. 해당 문제를 소프트웨어 측면에서 해결하기 위한 기존의 기법들은, 외부 조도에 대응하지 못하거나 밝기에 비해 색상이 향상되지 못하는 한계를 보인다. 따라서 본 논문은 외부 조도 값에 따라 영상의 밝기 및 색상을 향상하는 시인성 개선 알고리즘을 제안한다. 해당 알고리즘은 입력 영상과 함께 외부 조도 값을 인자로 받은 후, 딥러닝 모델을 통한 luminance 학습 및 chrominance 복원 방정식을 적용하여, 개선된 영상의 열화 현상과 입력 영상과의 대비 차이가 최소화되도록 영상을 생성한다. 이는 정성적 평가에서 열화 모델링 적용 영상 비교를 통해 해당 알고리즘이 강한 외부 조도 아래에서의 시인성 개선에 뛰어난 성능을 보임을 확인할 수 있다.