본 논문에서 마네킨에 착용된 의상 이미지를 분할하고 사용자의 사진에 입히는 가상의상착용 (VTON) 기술을 개발하였다. 의상과 모델의 3차원 정보가 필요하지 않는 2차원 이미지 기반 가상착용연구는 실용적인 가치가 크지만, 연구결과 현재 기술로는 의상 분할 시 가림이나 왜곡에 의한 문제 등 제약사항이 존재한다. 본 연구는 마네킨 의상을 사용함으로써 이러한 어려움을 줄였다는 가정 하에서, 딥러닝 기반 영역분할과 자세추정을 통하여 얻은 결과를 사용자 사진에 입히는 알고리즘을 제안하였다. 기존의 연구 대비 성능 개선을 위하여 사전 자세정보의 신뢰성 검사, 외곽선을 이용한 변형개선, 분할 영역개선 등을 사용하였다. 결과로 시각적으로 만족할 만한 의상착용의 경우가 전체의 50%이상으로 상당히 개선된 결과를 얻었다.
도시 유동인구가 증가함에 따라 도시 환경 소음에 관한 연구의 중요성이 증가하고 있다. 본 연구에서는 교통상황에서 발생하는 이상 소음을 최근 환경 소음 분류 연구에서 높은 성능을 보이는 딥러닝 알고리즘을 이용하여 분류한다. 구체적으로는 타이어 제동 마찰음, 자동차 충돌음, 자동차 경적음, 정상 소음 네 개의 클래스에 대하여 합성곱 신경망을 이용하여 분류한다. 또한, 실제 교통 상황에서의 환경잡음에 강인한 분류 성능을 갖기 위해 빗소리, 바람 소리, 군중 소리의 세 가지 환경잡음을 설정하였고 이를 활용하여 분류 모델을 설계하였으며 3 dB SNR(Signal to Noise Ratio) 조건에서 88 % 이상의 분류 성능을 가진다. 제시한 교통 소음에 대하여 기존 선행연구 대비 높은 분류 성능을 보이고, 빗소리, 바람 소리, 군중 소리의 세 가지 환경잡음에 강인한 교통 소음 분류 모델을 제안한다.
인공지능은 기술개발 속도가 가속화되어 생활, 의료, 금융 서비스 및 자율자동차 등 산업 전반에 적용되고 있다. 4차 산업혁명 시대의 핵심기술로 자리 잡고 있는 인공지능 경쟁력 확보를 위해 선진국들은 국가적 역량을 집중하고 있다. 반면 IT강국으로서의 인프라와 인적자원을 보유한 한국은 미국, 캐나다, 일본, 등 전통적인 인공지능 선진국뿐만 아니라 지능형 기술집약 산업 육성에 총력을 기울이는 후발주자 중국에도 뒤쳐져있는 상황이다. 지능정보 사회의 고도화에 따라 인공지능은 향후 국가의 산업경쟁력을 좌우할 기반기술인바, 국가적인 관심과 역량 결집이 필요하다. 또한 인공지능 기술의 종속을 막기 위하여 자체 기술개발 노력과 함께 선두업체와의 공동 개발이 중요하다. 이에 더하여 인공지능 시장 저변 확대를 위하여 제도 개선과 법률적 기반 마련이 시급하다.
지능형 사이버 공격으로 인한 피해는 시스템 운영 중단과 정보 유출뿐만 아니라 엄청난 규모의 경제적 손실을 동반한다. 최근 사이버 공격은 공격 목표가 뚜렷하며, 고도화된 공격 도구와 기법을 활용하여 정확하게 공격 대상으로 침투한다. 이러한 지능적인 사이버 공격으로 인한 피해를 최소화하기 위해서는 사이버 공격이 공격 대상의 핵심 시스템까지 침입하지 못하도록 공격 초기 또는 과정에서 차단해야 한다. 최근에는 빅데이터나 인공지능 기술을 활용하여 사이버 공격 경로를 예측하고 위험 수준을 분석하는 보안 기술들이 연구되고 있다. 본 논문에서는 자동화 사이버 공격 경로 예측 시스템 개발을 위한 기초 메커니즘으로 공격 트리와 RFI 기법을 활용한 사이버 공격 경로 분석 방법을 제안한다. 공격 트리를 활용하여 공격 경로를 가시화하고 각 공격 단계에서 RFI 기법을 이용하여 다음 단계로 이동할 수 있는 경로를 판단한다. 향후에 제안한 방법을 기반으로 빅데이터와 딥러닝 기술을 활용한 자동화된 사이버 공격 경로 예측 시스템의 메커니즘으로 활용할 수 있다.
마이크로렌즈 어레이 기반의 카메라로 촬영된 라이트필드 영상은 낮은 공간해상도 및 각해상도로 인하여 실제 사용하기에는 많은 제약이 따른다. 고해상도의 공간해상도 영상은 최근 많이 연구되고 있는 단일 영상 초해상도 기법으로 쉽게 얻을 수 있으나 고해상도의 각해상도 영상은 영상사이에 내재된 시점차 정보를 이용하는 과정에서 왜곡이 발생하여 좋은 품질의 각해상도 영상을 얻기 힘든 문제가 있다. 본 논문에서는 영상 사이에 내재된 시점차 정보를 효과적으로 추출하기 위해서 팽창 합성곱 신경망을 이용하여 초기 특징맵을 추출하고 잔차 신경망으로 새로운 시점 영상을 생성하는 라이트 필드 각 초해상도 영상 기법을 제안한다. 제안하는 네트워크는 기존의 각 초해상도 네트워크와 비교하여 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.
정보화 시대에 접어들면서 개개인의 신원을 정확하게 인식하여 인증하는 것은 정보 보호를 위해 매우 중요하기 때문에 신체를 활용한 생체인식의 활용이 점차 증가하고 있다. 그중 지정맥 인증 기술은 위조 및 복조하기 어려워 보안성과 정밀도가 높고 사용자 수용성이 용이하여 사회적 많은 관심을 받고 있다. 그러나 신원확인을 위한 알고리즘이나 주변의 빛의 환경에 따라 정확도가 떨어질 수 있다. 본 논문에서는 지정맥 측정 장치 중 활용성이 좋은 측면형 지정맥 인식기를 직접 설계하고 제작하여 높은 정확도와 인식률을 위해 DenseNet-201의 딥러닝 모델을 활용하여 인증하였으며 사용하는 적외선 광원과 주변 가시광선의 영향에 따른 지정맥 인증 기술의 성능을 시뮬레이션을 통해 분석하였다. 시뮬레이션은 전북대의 MMCBNU_6000과 직접 촬영한 지정맥 영상을 사용하고 EER을 이용하여 성능을 비교 분석한다.
본 논문에서는 차량용 블랙박스로 촬영된 고속도로 주간 주행 영상을 기반으로 차량을 종류별로 검출하고 추적한다. 그리고 검출된 차량의 종류별 대체 영상을 새로운 배경 영상의 같은 위치에 올려놓음으로써 새롭게 창조될 수 있는 실시간 MR 콘텐츠 제작 방안을 설계한다. 차량을 종류별로 검출하고 추적하기 위해서는 딥러닝의 객체 검출 분야에서 가장 잘 알려지고 유명한 YOLO 알고리즘을 사용한다. 또한, 검출된 차량의 종류별 대체 영상을 위해서는 RGB 색상을 기반으로 하는 Mask 기법을 사용한다. 실시간 MR 콘텐츠를 위해 사용될 차량 대체 영상의 크기는 원본 영상에서 검출된 차량의 영역 크기와 같은 크기로 대체된다. 본 논문에서는 실시간 MR 콘텐츠 설계가 가능함을 실험 및 시뮬레이션으로 확인하였으며 VR 콘텐츠 분야에서 유용하게 활용할 수 있을 것으로 판단한다.
본 연구는 뉴스 기사에서 기사문을 구성하는 문장별 중요도를 고려하여 요약문을 추출하는 방법에 관한 것으로 문장 중요도에 영향을 주는 특성으로 중심 문장(Topic Sentence)일 확률, 기사 제목 및 다른 문장과의 유사도, 문장 위치에 따른 가중치를 추출하여 문장 중요도를 계산하는 방법을 제안한다. 이때, 중심 문장(Topic Sentence)은 일반 문장과는 구별되는 특징을 가질 것이라는 가설을 세우고, 딥러닝 기반 분류 모델을 학습시켜 입력 문장에 대한 중심 문장 확률값을 구한다. 또한 사전학습된 ELMo 언어 모델을 활용하여 문맥 정보를 반영한 문장 벡터값을 기준으로 문장간 유사도를 계산하여 문장 특성으로 추출한다. LSTM 및 BERT 모델의 중심 문장 분류성능은 정확도 93%, 재현율 96.22%, 정밀도 89.5%로 높은 분석 결과가 나왔으며, 이렇게 추출된 문장 특성을 결합하여 문장별 중요도를 계산한 결과, 기존 TextRank 알고리즘과 비교하여 중심 문장 추출 성능이 10% 정도 개선된 것을 확인할 수 있었다.
본 논문은 컨볼루션 신경망(CNN)을 이용하여 폭발물 성분의 용량별로 분류할 때의 성능을 평가하는 연구이다. 기존의 폭발물 분류 방식 중에 IMS 증기 탐지기 방식은 폭발물의 농도가 사용자가 장비에서 설정한 임계치를 넘어야만 폭발물의 존재 여부를 판단한다. IMS 증기 탐지기는 폭발물이 존재하더라도 임계치를 넘지 않는 양이면 폭발물이 존재하지 않는다고 판단하는 문제가 있다. 따라서 폭발물 성분의 농도가 임계치를 넘지 않는 양일 때에도 폭발물 성분을 검출하는 방안이 필요하다. 이에 따라 본 논문에서는 폭발물 시계열 데이터를 Gramian Angular Field(GAF) 알고리즘으로 이미지화를 진행한 후 이미지와 영상처리뿐만 아니라 시계열 데이터 처리에도 뛰어난 성능을 보이는 딥러닝 모델인 컨볼루션 신경망(CNN)으로 직접 label을 설정해서 지도학습을 진행한 결과 폭발물 성분의 농도가 임계치를 넘지 않는 양일 때에도 폭발물 성분이 존재한다고 판단함과 동시에 폭발물 성분의 종류와 폭발물 성분의 농도의 양을 같이 판단할 수 있는지 성능평가를 진행했다.
본 논문은 잡음감쇠기에서 CNN(Convolutional Neural Network) 계층의 필터 수가 성능에 미치는 영향을 연구하였다 이 시스템은 적응필터 대신 신경망 예측필터를 이용하며 심층학습방법으로 잡음을 감쇠한다. 64-뉴런, 16-커널 CNN 필터와 오차 역전파 알고리즘을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정한다. 본 연구에서 필터 수에 대한 잡음감쇠기의 성능을 검증하기 위하여 Keras 라이브러리를 사용한 프로그램을 작성하고 시뮬레이션을 실시하였다. 시뮬레이션 결과, 본 시스템은 필터 수가 16일 때 MSE(Mean Squared Error) 및 MAE(Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 필터가 4개 일 때 성능이 가장 낮은 것을 볼 수 있다. 그리고 필터가 8개 이상이 되면 필터 수에 따라 MSE 및 MAE 값이 크게 차이나지 않는 것을 보여주었다. 이러한 결과로부터 음성신호의 주요 특징을 표현하기 위해서는 약 8개 이상의 필터를 사용해야 한다는 것을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.