• 제목/요약/키워드: Deep-learning algorithm

검색결과 1,187건 처리시간 0.024초

마네킨 의상사진 기반 온라인 가상의상착용 (Online Virtual Try On using Mannequin Cloth Pictures)

  • 안희준
    • 한국산업정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.29-38
    • /
    • 2018
  • 본 논문에서 마네킨에 착용된 의상 이미지를 분할하고 사용자의 사진에 입히는 가상의상착용 (VTON) 기술을 개발하였다. 의상과 모델의 3차원 정보가 필요하지 않는 2차원 이미지 기반 가상착용연구는 실용적인 가치가 크지만, 연구결과 현재 기술로는 의상 분할 시 가림이나 왜곡에 의한 문제 등 제약사항이 존재한다. 본 연구는 마네킨 의상을 사용함으로써 이러한 어려움을 줄였다는 가정 하에서, 딥러닝 기반 영역분할과 자세추정을 통하여 얻은 결과를 사용자 사진에 입히는 알고리즘을 제안하였다. 기존의 연구 대비 성능 개선을 위하여 사전 자세정보의 신뢰성 검사, 외곽선을 이용한 변형개선, 분할 영역개선 등을 사용하였다. 결과로 시각적으로 만족할 만한 의상착용의 경우가 전체의 50%이상으로 상당히 개선된 결과를 얻었다.

합성곱 신경망 기반 환경잡음에 강인한 교통 소음 분류 모델 (Convolutional neural network based traffic sound classification robust to environmental noise)

  • 이재준;김완수;이교구
    • 한국음향학회지
    • /
    • 제37권6호
    • /
    • pp.469-474
    • /
    • 2018
  • 도시 유동인구가 증가함에 따라 도시 환경 소음에 관한 연구의 중요성이 증가하고 있다. 본 연구에서는 교통상황에서 발생하는 이상 소음을 최근 환경 소음 분류 연구에서 높은 성능을 보이는 딥러닝 알고리즘을 이용하여 분류한다. 구체적으로는 타이어 제동 마찰음, 자동차 충돌음, 자동차 경적음, 정상 소음 네 개의 클래스에 대하여 합성곱 신경망을 이용하여 분류한다. 또한, 실제 교통 상황에서의 환경잡음에 강인한 분류 성능을 갖기 위해 빗소리, 바람 소리, 군중 소리의 세 가지 환경잡음을 설정하였고 이를 활용하여 분류 모델을 설계하였으며 3 dB SNR(Signal to Noise Ratio) 조건에서 88 % 이상의 분류 성능을 가진다. 제시한 교통 소음에 대하여 기존 선행연구 대비 높은 분류 성능을 보이고, 빗소리, 바람 소리, 군중 소리의 세 가지 환경잡음에 강인한 교통 소음 분류 모델을 제안한다.

인공지능 적용 산업과 발전방향에 대한 분석 (Analysis of AI-Applied Industry and Development Direction)

  • 문승혁
    • 문화기술의 융합
    • /
    • 제5권1호
    • /
    • pp.77-82
    • /
    • 2019
  • 인공지능은 기술개발 속도가 가속화되어 생활, 의료, 금융 서비스 및 자율자동차 등 산업 전반에 적용되고 있다. 4차 산업혁명 시대의 핵심기술로 자리 잡고 있는 인공지능 경쟁력 확보를 위해 선진국들은 국가적 역량을 집중하고 있다. 반면 IT강국으로서의 인프라와 인적자원을 보유한 한국은 미국, 캐나다, 일본, 등 전통적인 인공지능 선진국뿐만 아니라 지능형 기술집약 산업 육성에 총력을 기울이는 후발주자 중국에도 뒤쳐져있는 상황이다. 지능정보 사회의 고도화에 따라 인공지능은 향후 국가의 산업경쟁력을 좌우할 기반기술인바, 국가적인 관심과 역량 결집이 필요하다. 또한 인공지능 기술의 종속을 막기 위하여 자체 기술개발 노력과 함께 선두업체와의 공동 개발이 중요하다. 이에 더하여 인공지능 시장 저변 확대를 위하여 제도 개선과 법률적 기반 마련이 시급하다.

지능형 사이버 공격 경로 분석 방법에 관한 연구 (A Study on Mechanism of Intelligent Cyber Attack Path Analysis)

  • 김남욱;이동규;엄정호
    • 융합보안논문지
    • /
    • 제21권1호
    • /
    • pp.93-100
    • /
    • 2021
  • 지능형 사이버 공격으로 인한 피해는 시스템 운영 중단과 정보 유출뿐만 아니라 엄청난 규모의 경제적 손실을 동반한다. 최근 사이버 공격은 공격 목표가 뚜렷하며, 고도화된 공격 도구와 기법을 활용하여 정확하게 공격 대상으로 침투한다. 이러한 지능적인 사이버 공격으로 인한 피해를 최소화하기 위해서는 사이버 공격이 공격 대상의 핵심 시스템까지 침입하지 못하도록 공격 초기 또는 과정에서 차단해야 한다. 최근에는 빅데이터나 인공지능 기술을 활용하여 사이버 공격 경로를 예측하고 위험 수준을 분석하는 보안 기술들이 연구되고 있다. 본 논문에서는 자동화 사이버 공격 경로 예측 시스템 개발을 위한 기초 메커니즘으로 공격 트리와 RFI 기법을 활용한 사이버 공격 경로 분석 방법을 제안한다. 공격 트리를 활용하여 공격 경로를 가시화하고 각 공격 단계에서 RFI 기법을 이용하여 다음 단계로 이동할 수 있는 경로를 판단한다. 향후에 제안한 방법을 기반으로 빅데이터와 딥러닝 기술을 활용한 자동화된 사이버 공격 경로 예측 시스템의 메커니즘으로 활용할 수 있다.

잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법 (Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network)

  • 김동명;서재원
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1604-1611
    • /
    • 2020
  • 마이크로렌즈 어레이 기반의 카메라로 촬영된 라이트필드 영상은 낮은 공간해상도 및 각해상도로 인하여 실제 사용하기에는 많은 제약이 따른다. 고해상도의 공간해상도 영상은 최근 많이 연구되고 있는 단일 영상 초해상도 기법으로 쉽게 얻을 수 있으나 고해상도의 각해상도 영상은 영상사이에 내재된 시점차 정보를 이용하는 과정에서 왜곡이 발생하여 좋은 품질의 각해상도 영상을 얻기 힘든 문제가 있다. 본 논문에서는 영상 사이에 내재된 시점차 정보를 효과적으로 추출하기 위해서 팽창 합성곱 신경망을 이용하여 초기 특징맵을 추출하고 잔차 신경망으로 새로운 시점 영상을 생성하는 라이트 필드 각 초해상도 영상 기법을 제안한다. 제안하는 네트워크는 기존의 각 초해상도 네트워크와 비교하여 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.

측면형 지정맥 인식기 설계 및 구현 (Design and Implementation of Side-Type Finger Vein Recognizer)

  • 김경래;최홍락;김경석
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.159-168
    • /
    • 2021
  • 정보화 시대에 접어들면서 개개인의 신원을 정확하게 인식하여 인증하는 것은 정보 보호를 위해 매우 중요하기 때문에 신체를 활용한 생체인식의 활용이 점차 증가하고 있다. 그중 지정맥 인증 기술은 위조 및 복조하기 어려워 보안성과 정밀도가 높고 사용자 수용성이 용이하여 사회적 많은 관심을 받고 있다. 그러나 신원확인을 위한 알고리즘이나 주변의 빛의 환경에 따라 정확도가 떨어질 수 있다. 본 논문에서는 지정맥 측정 장치 중 활용성이 좋은 측면형 지정맥 인식기를 직접 설계하고 제작하여 높은 정확도와 인식률을 위해 DenseNet-201의 딥러닝 모델을 활용하여 인증하였으며 사용하는 적외선 광원과 주변 가시광선의 영향에 따른 지정맥 인증 기술의 성능을 시뮬레이션을 통해 분석하였다. 시뮬레이션은 전북대의 MMCBNU_6000과 직접 촬영한 지정맥 영상을 사용하고 EER을 이용하여 성능을 비교 분석한다.

블랙박스 영상 기반 차량 및 배경 대체 영상을 이용한 실시간 MR 콘텐츠의 설계 (Design of Real-time MR Contents using Substitute Videos of Vehicles and Background based on Black Box Video)

  • 김성호
    • 융합정보논문지
    • /
    • 제11권6호
    • /
    • pp.213-218
    • /
    • 2021
  • 본 논문에서는 차량용 블랙박스로 촬영된 고속도로 주간 주행 영상을 기반으로 차량을 종류별로 검출하고 추적한다. 그리고 검출된 차량의 종류별 대체 영상을 새로운 배경 영상의 같은 위치에 올려놓음으로써 새롭게 창조될 수 있는 실시간 MR 콘텐츠 제작 방안을 설계한다. 차량을 종류별로 검출하고 추적하기 위해서는 딥러닝의 객체 검출 분야에서 가장 잘 알려지고 유명한 YOLO 알고리즘을 사용한다. 또한, 검출된 차량의 종류별 대체 영상을 위해서는 RGB 색상을 기반으로 하는 Mask 기법을 사용한다. 실시간 MR 콘텐츠를 위해 사용될 차량 대체 영상의 크기는 원본 영상에서 검출된 차량의 영역 크기와 같은 크기로 대체된다. 본 논문에서는 실시간 MR 콘텐츠 설계가 가능함을 실험 및 시뮬레이션으로 확인하였으며 VR 콘텐츠 분야에서 유용하게 활용할 수 있을 것으로 판단한다.

ELMo 임베딩 기반 문장 중요도를 고려한 중심 문장 추출 방법 (Method of Extracting the Topic Sentence Considering Sentence Importance based on ELMo Embedding)

  • 김은희;임명진;신주현
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.39-46
    • /
    • 2021
  • 본 연구는 뉴스 기사에서 기사문을 구성하는 문장별 중요도를 고려하여 요약문을 추출하는 방법에 관한 것으로 문장 중요도에 영향을 주는 특성으로 중심 문장(Topic Sentence)일 확률, 기사 제목 및 다른 문장과의 유사도, 문장 위치에 따른 가중치를 추출하여 문장 중요도를 계산하는 방법을 제안한다. 이때, 중심 문장(Topic Sentence)은 일반 문장과는 구별되는 특징을 가질 것이라는 가설을 세우고, 딥러닝 기반 분류 모델을 학습시켜 입력 문장에 대한 중심 문장 확률값을 구한다. 또한 사전학습된 ELMo 언어 모델을 활용하여 문맥 정보를 반영한 문장 벡터값을 기준으로 문장간 유사도를 계산하여 문장 특성으로 추출한다. LSTM 및 BERT 모델의 중심 문장 분류성능은 정확도 93%, 재현율 96.22%, 정밀도 89.5%로 높은 분석 결과가 나왔으며, 이렇게 추출된 문장 특성을 결합하여 문장별 중요도를 계산한 결과, 기존 TextRank 알고리즘과 비교하여 중심 문장 추출 성능이 10% 정도 개선된 것을 확인할 수 있었다.

컨볼루션 신경망(CNN)을 이용한 폭발물 성분 용량별 분류 성능 평가에 관한 연구 (A Study on the Evaluation of Classification Performance by Capacity of Explosive Components using Convolution Neural Network (CNN))

  • 이창현;조성윤;권기원;임태호
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.11-19
    • /
    • 2022
  • 본 논문은 컨볼루션 신경망(CNN)을 이용하여 폭발물 성분의 용량별로 분류할 때의 성능을 평가하는 연구이다. 기존의 폭발물 분류 방식 중에 IMS 증기 탐지기 방식은 폭발물의 농도가 사용자가 장비에서 설정한 임계치를 넘어야만 폭발물의 존재 여부를 판단한다. IMS 증기 탐지기는 폭발물이 존재하더라도 임계치를 넘지 않는 양이면 폭발물이 존재하지 않는다고 판단하는 문제가 있다. 따라서 폭발물 성분의 농도가 임계치를 넘지 않는 양일 때에도 폭발물 성분을 검출하는 방안이 필요하다. 이에 따라 본 논문에서는 폭발물 시계열 데이터를 Gramian Angular Field(GAF) 알고리즘으로 이미지화를 진행한 후 이미지와 영상처리뿐만 아니라 시계열 데이터 처리에도 뛰어난 성능을 보이는 딥러닝 모델인 컨볼루션 신경망(CNN)으로 직접 label을 설정해서 지도학습을 진행한 결과 폭발물 성분의 농도가 임계치를 넘지 않는 양일 때에도 폭발물 성분이 존재한다고 판단함과 동시에 폭발물 성분의 종류와 폭발물 성분의 농도의 양을 같이 판단할 수 있는지 성능평가를 진행했다.

CNN 잡음감쇠기에서 필터 수의 최적화 (Optimization of the Number of Filter in CNN Noise Attenuator)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.625-632
    • /
    • 2021
  • 본 논문은 잡음감쇠기에서 CNN(Convolutional Neural Network) 계층의 필터 수가 성능에 미치는 영향을 연구하였다 이 시스템은 적응필터 대신 신경망 예측필터를 이용하며 심층학습방법으로 잡음을 감쇠한다. 64-뉴런, 16-커널 CNN 필터와 오차 역전파 알고리즘을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정한다. 본 연구에서 필터 수에 대한 잡음감쇠기의 성능을 검증하기 위하여 Keras 라이브러리를 사용한 프로그램을 작성하고 시뮬레이션을 실시하였다. 시뮬레이션 결과, 본 시스템은 필터 수가 16일 때 MSE(Mean Squared Error) 및 MAE(Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 필터가 4개 일 때 성능이 가장 낮은 것을 볼 수 있다. 그리고 필터가 8개 이상이 되면 필터 수에 따라 MSE 및 MAE 값이 크게 차이나지 않는 것을 보여주었다. 이러한 결과로부터 음성신호의 주요 특징을 표현하기 위해서는 약 8개 이상의 필터를 사용해야 한다는 것을 알 수 있다.