• 제목/요약/키워드: Deep-autoencoder

Search Result 104, Processing Time 0.022 seconds

Procedure for monitoring autocorrelated processes using LSTM Autoencoder (LSTM Autoencoder를 이용한 자기상관 공정의 모니터링 절차)

  • Pyoungjin Ji;Jaeheon Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.191-207
    • /
    • 2024
  • Many studies have been conducted to quickly detect out-of-control situations in autocorrelated processes. The most traditionally used method is a residual control chart, which uses residuals calculated from a fitted time series model. However, many procedures for monitoring autocorrelated processes using statistical learning methods have recently been proposed. In this paper, we propose a monitoring procedure using the latent vector of LSTM Autoencoder, a deep learning-based unsupervised learning method. We compare the performance of this procedure with the LSTM Autoencoder procedure based on the reconstruction error, the RNN classification procedure, and the residual charting procedure through simulation studies. Simulation results show that the performance of the proposed procedure and the RNN classification procedure are similar, but the proposed procedure has the advantage of being useful in processes where sufficient out-of-control data cannot be obtained, because it does not require out-of-control data for training.

Blind Drift Calibration using Deep Learning Approach to Conventional Sensors on Structural Model

  • Kutchi, Jacob;Robbins, Kendall;De Leon, David;Seek, Michael;Jung, Younghan;Qian, Lei;Mu, Richard;Hong, Liang;Li, Yaohang
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.814-822
    • /
    • 2022
  • The deployment of sensors for Structural Health Monitoring requires a complicated network arrangement, ground truthing, and calibration for validating sensor performance periodically. Any conventional sensor on a structural element is also subjected to static and dynamic vertical loadings in conjunction with other environmental factors, such as brightness, noise, temperature, and humidity. A structural model with strain gauges was built and tested to get realistic sensory information. This paper investigates different deep learning architectures and algorithms, including unsupervised, autoencoder, and supervised methods, to benchmark blind drift calibration methods using deep learning. It involves a fully connected neural network (FCNN), a long short-term memory (LSTM), and a gated recurrent unit (GRU) to address the blind drift calibration problem (i.e., performing calibrations of installed sensors when ground truth is not available). The results show that the supervised methods perform much better than unsupervised methods, such as an autoencoder, when ground truths are available. Furthermore, taking advantage of time-series information, the GRU model generates the most precise predictions to remove the drift overall.

  • PDF

3D Object Generation and Renderer System based on VAE ResNet-GAN

  • Min-Su Yu;Tae-Won Jung;GyoungHyun Kim;Soonchul Kwon;Kye-Dong Jung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.142-146
    • /
    • 2023
  • We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.

Design of Fuzzy k-Nearest Neighbors Classifiers based on Feature Extraction by using Stacked Autoencoder (Stacked Autoencoder를 이용한 특징 추출 기반 Fuzzy k-Nearest Neighbors 패턴 분류기 설계)

  • Rho, Suck-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.113-120
    • /
    • 2015
  • In this paper, we propose a feature extraction method using the stacked autoencoders which consist of restricted Boltzmann machines. The stacked autoencoders is a sort of deep networks. Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. In terms of pattern classification problem, the feature extraction is a key issue. We use the stacked autoencoders networks to extract new features which have a good influence on the improvement of the classification performance. After feature extraction, fuzzy k-nearest neighbors algorithm is used for a classifier which classifies the new extracted data set. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

A CTR Prediction Approach for Text Advertising Based on the SAE-LR Deep Neural Network

  • Jiang, Zilong;Gao, Shu;Dai, Wei
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1052-1070
    • /
    • 2017
  • For the autoencoder (AE) implemented as a construction component, this paper uses the method of greedy layer-by-layer pre-training without supervision to construct the stacked autoencoder (SAE) to extract the abstract features of the original input data, which is regarded as the input of the logistic regression (LR) model, after which the click-through rate (CTR) of the user to the advertisement under the contextual environment can be obtained. These experiments show that, compared with the usual logistic regression model and support vector regression model used in the field of predicting the advertising CTR in the industry, the SAE-LR model has a relatively large promotion in the AUC value. Based on the improvement of accuracy of advertising CTR prediction, the enterprises can accurately understand and have cognition for the needs of their customers, which promotes the multi-path development with high efficiency and low cost under the condition of internet finance.

Image Enhanced Machine Vision System for Smart Factory

  • Kim, ByungJoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2021
  • Machine vision is a technology that helps the computer as if a person recognizes and determines things. In recent years, as advanced technologies such as optical systems, artificial intelligence and big data advanced in conventional machine vision system became more accurate quality inspection and it increases the manufacturing efficiency. In machine vision systems using deep learning, the image quality of the input image is very important. However, most images obtained in the industrial field for quality inspection typically contain noise. This noise is a major factor in the performance of the machine vision system. Therefore, in order to improve the performance of the machine vision system, it is necessary to eliminate the noise of the image. There are lots of research being done to remove noise from the image. In this paper, we propose an autoencoder based machine vision system to eliminate noise in the image. Through experiment proposed model showed better performance compared to the basic autoencoder model in denoising and image reconstruction capability for MNIST and fashion MNIST data sets.

Algorithm for Determining Whether Work Data is Normal using Autoencoder (오토인코더를 이용한 작업 데이터 정상 여부 판단 알고리즘)

  • Kim, Dong-Hyun;Oh, Jeong Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.63-69
    • /
    • 2021
  • In this study, we established an algorithm to determine whether the work in the gas facility is a normal work or an abnormal work using the threshold of the reconstruction error of the autoencoder. This algorithm do deep learning the autoencoder only with time-series data of a normal work, and derives the optimized threshold of the reconstruction error of the normal work. We applied this algorithm to the time series data of the new work to get the reconstruction error, and then compare it with the reconstruction error threshold of the normal work to determine whether the work is normal work or abnormal work. In order to train and validate this algorithm, we defined the work in a virtual gas facility, and constructed the training data set consisting only of normal work data and the validation data set including both normal work and abnormal work data.

A Deep Learning-Based Face Mesh Data Denoising System (딥 러닝 기반 얼굴 메쉬 데이터 디노이징 시스템)

  • Roh, Jihyun;Im, Hyeonseung;Kim, Jongmin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1250-1256
    • /
    • 2019
  • Although one can easily generate real-world 3D mesh data using a 3D printer or a depth camera, the generated data inevitably includes unnecessary noise. Therefore, mesh denoising is essential to obtain intact 3D mesh data. However, conventional mathematical denoising methods require preprocessing and often eliminate some important features of the 3D mesh. To address this problem, this paper proposes a deep learning based 3D mesh denoising method. Specifically, we propose a convolution-based autoencoder model consisting of an encoder and a decoder. The convolution operation applied to the mesh data performs denoising considering the relationship between each vertex constituting the mesh data and the surrounding vertices. When the convolution is completed, a sampling operation is performed to improve the learning speed. Experimental results show that the proposed autoencoder model produces faster and higher quality denoised data than the conventional methods.

Deep Learning based Raw Audio Signal Bandwidth Extension System (딥러닝 기반 음향 신호 대역 확장 시스템)

  • Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1122-1128
    • /
    • 2020
  • Bandwidth Extension refers to restoring and expanding a narrow band signal(NB) that is damaged or damaged in the encoding and decoding process due to the lack of channel capacity or the characteristics of the codec installed in the mobile communication device. It means converting to a wideband signal(WB). Bandwidth extension research mainly focuses on voice signals and converts high bands into frequency domains, such as SBR (Spectral Band Replication) and IGF (Intelligent Gap Filling), and restores disappeared or damaged high bands based on complex feature extraction processes. In this paper, we propose a model that outputs an bandwidth extended signal based on an autoencoder among deep learning models, using the residual connection of one-dimensional convolutional neural networks (CNN), the bandwidth is extended by inputting a time domain signal of a certain length without complicated pre-processing. In addition, it was confirmed that the damaged high band can be restored even by training on a dataset containing various types of sound sources including music that is not limited to the speech.

Security Vulnerability Verification for Open Deep Learning Libraries (공개 딥러닝 라이브러리에 대한 보안 취약성 검증)

  • Jeong, JaeHan;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.117-125
    • /
    • 2019
  • Deep Learning, which is being used in various fields recently, is being threatened with Adversarial Attack. In this paper, we experimentally verify that the classification accuracy is lowered by adversarial samples generated by malicious attackers in image classification models. We used MNIST dataset and measured the detection accuracy by injecting adversarial samples into the Autoencoder classification model and the CNN (Convolution neural network) classification model, which are created using the Tensorflow library and the Pytorch library. Adversarial samples were generated by transforming MNIST test dataset with JSMA(Jacobian-based Saliency Map Attack) and FGSM(Fast Gradient Sign Method). When injected into the classification model, detection accuracy decreased by at least 21.82% up to 39.08%.