• 제목/요약/키워드: Deep-Learning

검색결과 5,313건 처리시간 0.035초

경량 딥러닝 기술 동향 (Recent R&D Trends for Lightweight Deep Learning)

  • 이용주;문용혁;박준용;민옥기
    • 전자통신동향분석
    • /
    • 제34권2호
    • /
    • pp.40-50
    • /
    • 2019
  • Considerable accuracy improvements in deep learning have recently been achieved in many applications that require large amounts of computation and expensive memory. However, recent advanced techniques for compacting and accelerating the deep learning model have been developed for deployment in lightweight devices with constrained resources. Lightweight deep learning techniques can be categorized into two schemes: lightweight deep learning algorithms (model simplification and efficient convolutional filters) in nature and transferring models into compact/small ones (model compression and knowledge distillation). In this report, we briefly summarize various lightweight deep learning techniques and possible research directions.

Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder

  • Yeo, Doyeob;Bae, Ji-Hoon;Lee, Jae-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권9호
    • /
    • pp.21-27
    • /
    • 2019
  • In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.

딥러닝 기반 항공안전 이상치 탐지 기술 동향 (Research Trends on Deep Learning for Anomaly Detection of Aviation Safety)

  • 박노삼
    • 전자통신동향분석
    • /
    • 제36권5호
    • /
    • pp.82-91
    • /
    • 2021
  • This study reviews application of data-driven anomaly detection techniques to the aviation domain. Recent advances in deep learning have inspired significant anomaly detection research, and numerous methods have been proposed. However, some of these advances have not yet been explored in aviation systems. After briefly introducing aviation safety issues, data-driven anomaly detection models are introduced. Along with traditional statistical and well-established machine learning models, the state-of-the-art deep learning models for anomaly detection are reviewed. In particular, the pros and cons of hybrid techniques that incorporate an existing model and a deep model are reviewed. The characteristics and applications of deep learning models are described, and the possibility of applying deep learning methods in the aviation field is discussed.

Deep learning classifier for the number of layers in the subsurface structure

  • Kim, Ho-Chan;Kang, Min-Jae
    • International journal of advanced smart convergence
    • /
    • 제10권3호
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, we propose a deep learning classifier for estimating the number of layers in the Earth's structure. When installing a grounding system, knowledge of the subsurface in the area is absolutely necessary. The subsurface structure can be modeled by the earth parameters. Knowing the exact number of layers can significantly reduce the amount of computation to estimate these parameters. The classifier consists of a feedforward neural network. Apparent resistivity curves were used to train the deep learning classifier. The apparent resistivity at 20 equally spaced log points in each curve are used as the features for the input of the deep learning classifier. Apparent resistivity curve data sets are collected either by theoretical calculations or by Wenner's measurement method. Deep learning classifiers are coded by Keras, an open source neural network library written in Python. This model has been shown to converge with close to 100% accuracy.

Secure Object Detection Based on Deep Learning

  • Kim, Keonhyeong;Jung, Im Young
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.571-585
    • /
    • 2021
  • Applications for object detection are expanding as it is automated through artificial intelligence-based processing, such as deep learning, on a large volume of images and videos. High dependence on training data and a non-transparent way to find answers are the common characteristics of deep learning. Attacks on training data and training models have emerged, which are closely related to the nature of deep learning. Privacy, integrity, and robustness for the extracted information are important security issues because deep learning enables object recognition in images and videos. This paper summarizes the security issues that need to be addressed for future applications and analyzes the state-of-the-art security studies related to robustness, privacy, and integrity of object detection for images and videos.

딥 러닝 기반의 이미지 압축 알고리즘에 관한 연구 (Study on Image Compression Algorithm with Deep Learning)

  • 이용환
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.156-162
    • /
    • 2022
  • Image compression plays an important role in encoding and improving various forms of images in the digital era. Recent researches have focused on the principle of deep learning as one of the most exciting machine learning methods to show that it is good scheme to analyze, classify and compress images. Various neural networks are able to adapt for image compressions, such as deep neural networks, artificial neural networks, recurrent neural networks and convolution neural networks. In this review paper, we discussed how to apply the rule of deep learning to obtain better image compression with high accuracy, low loss-ness and high visibility of the image. For those results in performance, deep learning methods are required on justified manner with distinct analysis.

A Survey on Deep Convolutional Neural Networks for Image Steganography and Steganalysis

  • Hussain, Israr;Zeng, Jishen;Qin, Xinhong;Tan, Shunquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1228-1248
    • /
    • 2020
  • Steganalysis & steganography have witnessed immense progress over the past few years by the advancement of deep convolutional neural networks (DCNN). In this paper, we analyzed current research states from the latest image steganography and steganalysis frameworks based on deep learning. Our objective is to provide for future researchers the work being done on deep learning-based image steganography & steganalysis and highlights the strengths and weakness of existing up-to-date techniques. The result of this study opens new approaches for upcoming research and may serve as source of hypothesis for further significant research on deep learning-based image steganography and steganalysis. Finally, technical challenges of current methods and several promising directions on deep learning steganography and steganalysis are suggested to illustrate how these challenges can be transferred into prolific future research avenues.

유전 알고리즘 기반의 심층 학습 신경망 구조와 초모수 최적화 (Genetic algorithm based deep learning neural network structure and hyperparameter optimization)

  • 이상협;강도영;박장식
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.519-527
    • /
    • 2021
  • Alzheimer's disease is one of the challenges to tackle in the coming aging era and is attempting to diagnose and predict through various biomarkers. While the application of various deep learning-based technologies as powerful imaging technologies has recently expanded across the medical industry, empirical design is not easy because there are various deep earning neural networks architecture and categorical hyperparameters that rely on problems and data to solve. In this paper, we show the possibility of optimizing a deep learning neural network structure and hyperparameters for Alzheimer's disease classification in amyloid brain images in a representative deep earning neural networks architecture using genetic algorithms. It was observed that the optimal deep learning neural network structure and hyperparameter were chosen as the values of the experiment were converging.

딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로 (Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit)

  • 정여진;안성만;양지헌;이재준
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.1-17
    • /
    • 2017
  • 딥러닝 프레임워크의 대표적인 기능으로는 '자동미분'과 'GPU의 활용' 등을 들 수 있다. 본 논문은 파이썬의 라이브러리 형태로 사용 가능한 프레임워크 중에서 구글의 텐서플로와 마이크로소프트의 CNTK, 그리고 텐서플로의 원조라고 할 수 있는 티아노를 비교하였다. 본문에서는 자동미분의 개념과 GPU의 활용형태를 간단히 설명하고, 그 다음에 logistic regression을 실행하는 예를 통하여 각 프레임워크의 문법을 알아본 뒤에, 마지막으로 대표적인 딥러닝 응용인 CNN의 예제를 실행시켜보고 코딩의 편의성과 실행속도 등을 확인해 보았다. 그 결과, 편의성의 관점에서 보면 티아노가 가장 코딩 하기가 어렵고, CNTK와 텐서플로는 많은 부분이 비슷하게 추상화 되어 있어서 코딩이 비슷하지만 가중치와 편향을 직접 정의하느냐의 여부에서 차이를 보였다. 그리고 각 프레임워크의 실행속도에 대한 평가는 '큰 차이는 없다'는 것이다. 텐서플로는 티아노에 비하여 속도가 느리다는 평가가 있어왔는데, 본 연구의 실험에 의하면, 비록 CNN 모형에 국한되었지만, 텐서플로가 아주 조금이지만 빠른 것으로 나타났다. CNTK의 경우에도, 비록 실험환경이 달랐지만, 실험환경의 차이에 의한 속도의 차이의 편차범위 이내에 있는 것으로 판단이 되었다. 본 연구에서는 세 종류의 딥러닝 프레임워크만을 살펴보았는데, 위키피디아에 따르면 딥러닝 프레임워크의 종류는 12가지가 있으며, 각 프레임워크의 특징을 15가지 속성으로 구분하여 차이를 특정하고 있다. 그 많은 속성 중에서 사용자의 입장에서 볼 때 중요한 속성은 어떤 언어(파이썬, C++, Java, 등)로 사용가능한지, 어떤 딥러닝 모형에 대한 라이브러리가 잘 구현되어 있는지 등일 것이다. 그리고 사용자가 대규모의 딥러닝 모형을 구축한다면, 다중 GPU 혹은 다중 서버를 지원하는지의 여부도 중요할 것이다. 또한 딥러닝 모형을 처음 학습하는 경우에는 사용설명서가 많은지 예제 프로그램이 많은지 여부도 중요한 기준이 될 것이다.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.