• Title/Summary/Keyword: Deep rock environment

Search Result 86, Processing Time 0.021 seconds

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.

Evaluation of Mazars damage model of KURT granite under simulated coupled environment of geological disposal (처분 복합환경을 고려한 KURT 화강암의 Mazars 손상모델 평가)

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.419-434
    • /
    • 2020
  • In this study, the damage parameters of Mazars model for KURT (KAERI Underground Research Tunnel) granite are measured form uniaxial compressive and Brazilian tests under the simulated coupled condition of a deep geological disposal. The tests are conducted in three different temperatures (15℃, 45℃, and 75℃) and dry/saturated conditions. Major model parameters such as maximum effective tensile strain (𝜖d0), At, Bt, Ac, and Bc differ from the typical reference values of concrete specimens. This is likely due to the difference in elastic modulus between rock and concrete. It is found that the saturation of specimens causes an increase in value of Bt and Bc while, the rise in temperature increases 𝜖d0 and Bt and decreases Bc. The damage model obtained from this study will be used as the primary input parameters in the development of coupled Thermo-Hydro-Mechanical Damage numerical model in KAERI.

Cesium Sorption to Granite in An Anoxic Environment (무산소 환경에서의 화강암에 대한 세슘 수착 특성 연구)

  • Cho, Subin;Kwon, Kideok D.;Hyun, Sung Pil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.101-109
    • /
    • 2022
  • The mobility and transport of radioactive cesium are crucial factors to consider for the safety assessment of high-level radioactive waste disposal sites in granite. The retardation of radionuclides in the fractured crystalline rock is mainly controlled by the hydrochemical condition of groundwater and surface reactions with minerals present in the fractures. This paper reports the experimental results of cesium sorption to the Wonju Granite, a typical Mesozoic granite in Korea, performed in an anaerobic chamber that mimics the anoxic environment of a deep disposal site. We measured the rates and amounts of cesium (133Cs) removed by crushed granite samples in different electrolyte (NaCl, KCl, and CaCl2) solutions and a synthetic groundwater solution, with variations in the initial cesium concentration (10-5, 5×10-6, 10-6, 5×10-7 M). The cesium sorption kinetic and isotherm data were successfully simulated by the pseudo-second-order kinetic model (r2= 0.99) and the Freundlich isotherm model (r2= 0.99), respectively. The sorption distribution coefficient of granite increased almost linearly with increasing biotite content in granite samples, indicating that biotite is an effective cesium scavenger. The cesium removal was minimal in KCl solution compared to that in NaCl or CaCl2 solution, regardless of the ionic strength and initial cesium concentration that we examined, showing that K+ is the most competitive ion against cesium in sorption to granite. Because it is the main source mineral of K+ in fracture fluids, biotite may also hinder the sorption of cesium, which warrants further research.

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

A Preliminary Study on Stratigraphy and Petrochemistry of the Okcheon Group, Southwestern Okcheon Metamorphic Belt (서남 옥천변성대 옥천층군의 층서 및 암석화학에 대한 예비연구)

  • 유인창;김성원;오창환;이덕수
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.511-525
    • /
    • 2003
  • The Okcheon Group in the southwestern part of the Okcheon Metamorphic Belt is subdivided into two distinct tectonostratigraphic units: the Boeun unit in the south and the Pibanryeong unit in the north. The Boeun unit consists of petites, psammites, carbonaceous petites, limestones and pebble-bearing quartzites. The Pibanryeong unit is composed of petites, well-sorted fine-grained psammites, carbonaceous psammites and quartzites. In order to outlining stratigraphy and depositional environments of the Okcheon Group, detailed stratigraphic sections were measured in three locations; one section(Gosan section) of the Boeun unit and two sections(Sorungjae and Hwangryeongzae sections) of the Pibanryeong unit. The Gosan section of the Boeun unit is interpreted to be deposited in the shallow marine environments, whereas the Sorungjae and Hwangryeonaiae sections of the Pibanryeong unit appear to be deposited in slope and deep basin environments. This result indicates rapid subsidence between deposition of the Boeun and Pibanryeong units in sedimentary environment. The trace of sedimentological environments in the Hwasan area was investigated by geochemical analysis of 109 metapelitic and psammitic rock samples. Distinct chemical variations of politic and psammitic rocks from the Boeun and Pibanryeong units in the study area are evident from plots of major elements and $A1_2O_3$/$SiO_2$ versus Basicity Index($Fe_2O_3{+}MgO$)/($SiO_2{+}K_2O{+}Na_2O$). The rocks show a progressive chemical trend from the Boeun unit to the Pibanryeong unit on these diagrams. They in the southern sector of the Boeun unit display lower values and a comparatively wide range of $A1_2O_3$/$SiO_2$ and Basicity Index, as compared with those from the northern sector of the Boeun and Pibanryeong units. The southern sector of the Pibanryeong unit including narrow staurolite-bearing zone is characterized by values that are transitional between the Boeun and Pibanryeong units. These data, combined with depositional environment progressively deepened towards the northwest, support a half-graben model for the Okcheon basin, as proposed by Cluzel et al.(1990)

Genesis and Classification of the Red-Yellow Soils derived from Residuum on Acidic and Intermediate Rocks -II. Songjeong series (산성암(酸性岩) 및 중성암(中性岩)의 잔적층(殘積層)에 발달(發達)한 적황색토(赤黃色土)의 생성(生成) 및 분류(分類) -제(第)II보(報) 송정통(松汀統)에 관(關)하여)

  • Um, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.75-81
    • /
    • 1973
  • The morphological, physical, and chemical properties of Sonjeong series derived from acidic crystalline rocks are presented. Also it deals with the genesis and classification of the Songjeong series. Morphologically these soils have brown to dark brown loam A horizons and yellowish red to red clay loam Bt horizons with moderate, medium subangular blocky structure and thin patchy clay cutans on the ped faces. C horizons are very deep, yellowish red to yellowish brown fine sandy loam or sandy loam with original rock structure. Physically distribution of particle size indicates that clay increases with depth up to argillic horizons but below the argillic horizons clay content decrease. The moisture holding capacity is fairly good in Songjeong soils. Chemically soil reaction is strongly to very strongly acid throughout the profile and content of organic matter is less than 1 per cent except A horizons. Cation exchange capacity ranges from 5 to 9 me/100g of soils and base saturation is less than 35 per cent throughout the profile. The natural fertility of Songjeong soils are usually low. It needs lime, organic matter, and heavy application of fertilizer for the crop land. These soils occur temperate and humid climate under coniferous, deciduous, and mixed forest vegetation. Songjeong soils are classified as Red-Yellow Soils. Characteristically Songjeong soils are similar to Red-Yellow Podzolic soils in the United States but lack of A2 horizons and are quite liket Red-Yellow Soils of the Japan. According to new classification system which is 7th approximation of USDA Songjeong soils can be classified as fine loamy, mesic family of Typic Hapludults and in the FAO/UNESCO project World Soil Map as Orthic Acrisols.

  • PDF