• Title/Summary/Keyword: Deep residual gated recurrent neural network

Search Result 2, Processing Time 0.016 seconds

Parkinson's disease diagnosis using speech signal and deep residual gated recurrent neural network (음성 신호와 심층 잔류 순환 신경망을 이용한 파킨슨병 진단)

  • Shin, Seung-Su;Kim, Gee Yeun;Koo, Bon Mi;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.308-313
    • /
    • 2019
  • Parkinson's disease, one of the three major diseases in old age, has more than 70 % of patients with speech disorders, and recently, diagnostic methods of Parkinson's disease through speech signals have been devised. In this paper, we propose a method of diagnosis of Parkinson's disease based on deep residual gated recurrent neural network using speech features. In the proposed method, the speech features for diagnosing Parkinson's disease are selected and applied to the deep residual gated recurrent neural network to classify Parkinson's disease patients. The proposed deep residual gated recurrent neural network, an algorithm combining residual learning with deep gated recurrent neural network, has a higher recognition rate than the traditional method in Parkinson's disease diagnosis.

No-reference quality assessment of dynamic sports videos based on a spatiotemporal motion model

  • Kim, Hyoung-Gook;Shin, Seung-Su;Kim, Sang-Wook;Lee, Gi Yong
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.538-548
    • /
    • 2021
  • This paper proposes an approach to improve the performance of no-reference video quality assessment for sports videos with dynamic motion scenes using an efficient spatiotemporal model. In the proposed method, we divide the video sequences into video blocks and apply a 3D shearlet transform that can efficiently extract primary spatiotemporal features to capture dynamic natural motion scene statistics from the incoming video blocks. The concatenation of a deep residual bidirectional gated recurrent neural network and logistic regression is used to learn the spatiotemporal correlation more robustly and predict the perceptual quality score. In addition, conditional video block-wise constraints are incorporated into the objective function to improve quality estimation performance for the entire video. The experimental results show that the proposed method extracts spatiotemporal motion information more effectively and predicts the video quality with higher accuracy than the conventional no-reference video quality assessment methods.