• 제목/요약/키워드: Deep ocean mineral resource

검색결과 10건 처리시간 0.024초

A Study on the Characteristics of Deep Ocean Water Resource of the East Sea and Its Utilization (동해심층수의 자원성 해석 및 활용 방향 연구)

  • Kim H.J.;Jung D.H.;Moon D.S.;Shin P.K.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.17-22
    • /
    • 2004
  • Recently, deep ocean water (DOW), which is plentiful in the East sea, has been recognized a global resources for 21st century. To clarify the characteristics of DOW of the East Sea, the quality of DOW has been investigated and analyzed for 5 years in situ and laboratory in the viewpoints of stability of low-temperature, mineral balance, rich nutrition and cleanness. And it characteristics were compared with foreign DOW used for commercial applications. This study do finally suggest the various utilization methods of DOW based on each characteristics and suitable examples for fisheries and industrial purpose.

  • PDF

Environment-friendly Processing Technologies of Mine Tailings: Research on the Characteristics of Mine Tailings when Developing of Deep Sea Mineral Resources (선광잔류물의 친환경적 처리 기술: 심해저광물자원개발시 발생하는 선광잔류물 특성 연구)

  • Moon, Inkyeong;Yoo, Chanmin;Kim, Jonguk
    • Economic and Environmental Geology
    • /
    • 제53권6호
    • /
    • pp.781-792
    • /
    • 2020
  • Mine tailings, which are inevitably formed by the development of manganese nodules, manganese crusts, and hydrothermal seafloor deposits, have attracted attention because of their quantity and potential toxicity. However, there is a lack of data on the quantity of mine tailings being generated, their physicochemical properties, and their effects as environmental hazards and on marine ecosystems in general. The importance of treating mine tailings in an environmentally friendly manner has been recognized recently and related reduction/treatment methods are being considered. In the case of deep-sea mineral resource development, if mine tailings cannot be treated aboard a ship, the issue becomes one of the cost of transporting them to land and solving the problem of environmental pollution there. Therefore, the Korea Institute of Ocean Science and Technology conducted research on the harmfulness of mine tailings, their effect on marine ecosystem, the diffusion model of contaminated particles, and candidate purification treatment technologies based on five representative controlling factors: 1) effects of pollution /on the environment, 2) effects of environmental/ biological hazards, 3) diffusion of particles, 4) mineral dressings, and 5) reducing/processing mine tailings. The results of this study can provide a basis for minimizing environmental problems by providing scientific evidences of the environmental effects of mine tailings. In addition, it is also expected that these results could be applied to the treatment of pollutants of different origins and at land-based mining waste sites.

Future Deep Ocean Resources and the Technologies for Commercial Development

  • Yamazaki, Tetsuo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.14-20
    • /
    • 2006
  • During the 11 year period of 1995-2005, there was about a 40% increase in the world copper demand mainly because of the Asian economic growth. In the increase, about a half was consumed by China. Most of the China's copper demand increase has been taken place over the final 5-6 years of that period. The growth is expected to continue for several years, and in 10 years or sooner the same situation is expected for India. Copper is the third metal in global demand, but its little abundance in the Earth's crust is not well recognized. From the production rate and the abundance, a copper shortage, or crisis, has a high probability than the other metals. Deep ocean mineral resources such as manganese nodules in the Clarion-Clipperton Fracture Zones, Kuroko-type massive seafloor sulfides (SMS), and cobalt-rich manganese crusts in the EEZ and the high sea areas have big potentials for the future sources. We need to re-evaluate their potentials as copper resources and other metals to realize their developments. The same situation is under progress in the hydro-carbon markets. Methane hydrates that are classified into non-conventional hydro-carbon resources have an important role as the future sources, too.

  • PDF

Composition of Rare Earth Elements in Northeast Pacific Surface Sediments, and their Potential as Rare Earth Elements Resources (북동태평양 Clarion-Clipperton 해역 표층 퇴적물의 희토류 조성 및 희토류 광상으로서의 잠재성)

  • Seo, Inah;Pak, Sang Joon;Kiseong, Hyeong;Kong, Gee-Soo;Kim, Jonguk
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.383-394
    • /
    • 2014
  • The surface sediments from the manganese nodule exploration area of Korea in the Clarion-Clipperton fracture zone were investigated to understand the resource potential of and emplacement mechanism for rare earth elements (REEs). The sediments are categorized into three lithological units (Unit I, II and III from top to bottom), but into two groups (Unit I/II and Unit III) based on the distribution pattern of REEs. The distribution pattern of REEs in Unit I/II is similar to that of Post-Archean Australian Shale (PAAS), but shows a negative Ce anomaly and enrichment in heavy REEs (HREEs). In Unit III, the HREE enrichment and Ce anomaly is much more remarkable than Unit I/II when normalized to PAAS, which are interpreted as resulting from the absorption of REEs from seawater by Fe oxyhydroxides that were transported along the buoyant plume from remotely-located hydrothermal vents. It is supported by the PAAS-normalized REE pattern of Unit III which is similar to those of seawater and East Pacific Rise sediments. Meanwhile, the PAAS-normalized REE pattern of Unit I/II is explained by the 4:1 mixing of terrestrial eolian sediment and Unit III from each, indicating the much smaller contribution of hydrothermal origin material to Unit I/II. The studied sediments have the potentiality of a low-grade and large tonnage REE resource. However, the mining of REE-bearing sediment needs a large size extra collecting, lifting and treatment system to dress and refine low-grade sediments if the sediment is exploited with manganese nodules. It is economically infeasible to develop low-grade REE sediments at this moment in time because the exploitation of REE-bearing sediments with manganese nodules increase the mining cost.

Rare Metal Contents and Their Implications of Seabed Mineral Resources Explored by Korea (한국이 탐사 중인 해저광물자원의 희유금속 함량과 의미)

  • Pak, Sang-Joon;Moon, Jai-Woon;Lee, Kyeong-Yong;Chi, Sang-Bum
    • Economic and Environmental Geology
    • /
    • 제43권5호
    • /
    • pp.455-466
    • /
    • 2010
  • Seabed mineral resources explored by Korea are categorized into major three types of deposit; manganese nodule, manganese crust and polymetallic sulfides. Pt displays high enrichment factors (400, ore/crust ratios) in manganese nodule. Rare earth oxide content in manganese nodule ranges from 0.037 to 0.302 REO % with mean value of 0.12 REO %. Both of Te and Pt are enriched elements in manganese crust, displaying enrichment factors of 10800 and 150, respectively. Rare earth oxide's contents of manganese crust are slightly higher than manganese nodule's (0.013~0.387 REO %, average = 0.18 REO %). Se and In are outstanding rare metals from seabed polymetallic sulfides, showing enrichment factors of 1300 and 110, respectively. Au (0.8~26.3 g/t) and Ag (0.9~348.0 g/t) are another enriched elements in polymetallic sulfides. The main concern at exploiting seabed mineral resource will be a securing rare metals for high-technology industries and rare metals from subsea mineral deposits will add economic values to commodity candidates such like Co, Ni and Cu.

A study on the basic design of bypass valve using CAE technology (CAE 기반 바이패스 밸브 기본설계에 대한 연구)

  • Oh, Jae-Won;Min, Cheon-Hong;Cho, Su-Gil;Park, Sang-Hyun;Kang, Kwan-Gu;Kim, Seong-Soon;Hong, Sup;Kim, Hyung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.663-670
    • /
    • 2016
  • This paper introduces the concept of the computer-aided engineering(CAE) design method for a bypass valve in a system that is used for the safe lifting of mineral resources in deep-seabed mining. Although the bypass valve has a simple mechanism, its design is very difficult because of various influencing factors. This equipment, which has a complex design process, should be developed by CAE-based design method. The method can perform the design, design verification, and virtual experiment at the same time. In this study, the CAE-based method for the design of the bypass valve has been developed using fluid dynamics, multi-body dynamics, and optimization method.

Geochemical Properties of Deep Sea Sediment in the Benthic Environmental Impact Experiment Site (BIS) of Korea (심해 저층환경충격 시험지역의 퇴적물 지화학적 특성)

  • Kong, Gee Soo;Hyeong, Kiseong;Choi, Hun-Soo;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.407-421
    • /
    • 2014
  • The benthic environmental impact experiment addresses environmental impacts at a specific site related to deep-sea mineral resource development. We have acquired several tens of multi- or box core samples at 31 sites within the Benthic environmental Impact Site (BIS) since 2010, aiming to examine the basic properties of surficial deep-sea sediment as a potential source for deep-water plumes. In this study, we present the geochemical properties such as major elements, rare earth elements (REEs), and heavy metal contents at the BIS. Such proxies vary distinctly according to the Facies association. The lithology of all core sediments in the BIS corresponds to both Association Ib and Association IIIb. The vertical profiles of some major elements ($SiO_2$, $Fe_2O_3$, CaO, $P_2O_5$, MgO, MnO) show noticeable differences between Association Ib and IIIb, while others ($Al_2O_3$, $TiO_2$, $Na_2O$, and $K_2O$) do not vary between Association Ib and IIIb. REEs are also distinctly different for Associations Ib and IIIb; in Association Ib, REY and HREE/LREE are uniform through the sediment section, while they increase downward in Association IIIb like the major elements; below a depth of 8 cm, REY is over 500 ppm. The metal enrichment factor (EF) evaluates the anthropogenic influences of some metals (Cu, Ni, Pb, Zn, and Cd) in marine sediments. In both Associations, the EF for Cu is over 1.5, the EF for Ni and Pb ranges from 0.5 to 1.5, and the EF for Zn and Cd are less than 0.5, indicating Cu is enriched but Zn and Cd are relatively depleted in the BIS. The vertical variations of geochemical properties between Association Ib and IIIb are shown to be clearly different, which seems to be related to the global climate changes such as the shift of Intertropical convergence zone (ITCZ).

Correction of the Sea Effect in the Magnetotelluric (MT) Data Using an Iterative Tensor Stripping During Inversion (MT 자료 역산과정에서 반복적인 Tensor Stripping을 통한 해양효과 보정)

  • Yang, Jun-Mo;Lee, Chun-Ki;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • 제11권4호
    • /
    • pp.286-301
    • /
    • 2008
  • When magnetotelluric (MT) data are obtained in vicinity of the coast, the sea can distort observed MT responses, especially those of deep part of subsurface. We introduce an iterative method to correct the sea effect, based on the previous topographic correction method which removes the distortions due to topographic changes in seafloor MT data. The method first corrects the sea effect in observed MT impedance, and then inverts corrected responses in a model space without the sea. Due to mutual coupling between sea and subsurface structure, the correction and inversion steps are iterated until changes in each result become negligible. The method is validated for 1-D and 2-D structure using synthetic MT data produced by 3-D forward modeling including surrounding seas. In all cases, the method closely recovers the given structure after a few iterations. To test the applicability of the proposed method to field data, we generate synthetic MT data for the Jeju Island whose 1-D conductivity structure is well known, using 3-D forward modeling. The distortions due to the surrounding sea start to appear below the frequency about 1 Hz, and are relatively severe in the electrical field perpendicular to the coastline because of the location of the observation sites. The proposed method successfully eliminates the sea effect after three iterations, and both 1-D and 2-D inversion of corrected responses closely recover the given subsurface structure of the Jeju Island model.

Studies on Fluid Inclusion and Pyrite Geochemistry in the Moisan Au-Ag Deposit, Haenam District, Korea (해남 모이산 금-은 광상의 유체포유물 및 황화물 지구화학 연구)

  • Park, Sol;Seo, Jung Hun;Kim, Chang Seong;Yang, Yoon-Seok;Oh, Jihye;Kim, Jonguk
    • Economic and Environmental Geology
    • /
    • 제53권3호
    • /
    • pp.221-234
    • /
    • 2020
  • We occur together with telluride minerals. Fluid inclusions in the euhedral quartz crystals are mainly aqueous liquid-rich inclusions, which have salinities about 0.18-2.24 wt% NaCl equivalent. Some quartz vein contains aqueous vapor-rich inclusions as well. Homogenization temperatures of the assemblages of the liquid-rich inclusions are about 141-384 ℃, and the temperatures are lower at the shallower vein samples. In the high Au-Ag grade depth intervals, relatively deeper fluids have relatively higher salinities and homogenization temperatures, while shallower fluids show somewhat wider ranges. These might indicate that the deep Au-Ag bearing hydrothermal fluids at the Moisan area experienced phase separation as well as mixing with meteoric water by decreasing pressure. Au-Ag precipitation in the Moisan deposit is not associated with pyrite, but pyrite include Au-Ag bearing phase as an inclusion, which might possibly be tellurides or electrum. Au/Ag ratios in the Au-Ag bearing phase do not change with different depth.