Hyeong Woo Kim;Subin Lee;Jin Ho Yang;Yeonsil Moon;Jongho Lee;Won-Jin Moon
Korean Journal of Radiology
/
제24권11호
/
pp.1131-1141
/
2023
Objective: Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. Materials and Methods: This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). Results: Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. Conclusion: Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.
Zain Ul Abideen;Xiaodong Sun;Chao Sun;Hafiz Shafiq Ur Rehman Khalil
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권7호
/
pp.1726-1748
/
2024
Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines optimal, safe paths considering physical limitations, environmental factors, and agent interactions. Recent advancements in trajectory planning and future location prediction stem from rapid progress in machine learning and optimization algorithms. In this paper, we proposed a novel framework for Spatial-temporal transformer-based feed-forward neural networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is trained on trajectory data to generate embeddings that capture the high-level features of different trajectories. These embeddings can then be used as input to a transformer-based trajectory planning model, which can generate trajectories for new objects based on the embeddings of similar trajectories in the training data. In the next step, distant regions, we embedded feedforward network is responsible for generating the distant trajectories by taking as input a set of features that represent the object's current state and historical data. One advantage of using feedforward networks for distant trajectory planning is their ability to capture long-term dependencies in the data. In the final step of forecasting for future locations, the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are encoded utilizing location-based social networks(LBSN) based on visiting semantic locations. The model has been specially trained to forecast future locations using precise longitude and latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-of-the-art methods.
산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.
기상 및 기후 정보를 활용하여 기후변화에 대응하기 위한 기후 스마트 농업을 도입하기 위한 노력이 진행되어 왔다. 기후 스마트 농업을 실현하기 위해 농가별 기상자료 수집 및 관리가 요구된다. 4차 산업혁명 시대의 주요한 기술인 IoT, 인공지능, 및 클라우드 컴퓨팅 기술들이 농가 단위의 기상정보 생산에 적극적으로 활용될 수 있다. 저비용과 저전력 특성을 가진 IoT 센서들로 무선 센서 네트워크를 구축할 경우, 농가나 농촌 공동체 수준에서 농업 생태계의 생산성을 파악할 수 있는 기상관측자료의 수집 및 분석이 가능하다. 무선 센서 네트워크를 통해 자료가 수집될 수 있는 공간적인 범위를 특정 농가보다는 농촌 공동체 수준으로 확대하여 IoT 기술의 수혜 농가를 확대하고, 아울러 상세기상정보의 생산 및 검증에 활용가능한 농업기상 빅데이터 구축이 필요하다. 기존에 개발되어 보급되고 있는 전자기후도를 활용하여, 농가 단위의 기상 추정 자료가 제공되고 있다. 이들 자료의 신뢰성을 향상시키고, 기존의 서비스 체계에서 제공되지 않고 있는 기상 변수들을 지원하기 위해 심층신경망과 같은 인공지능 기술들이 도입되어야 할 것이다. 시스템 구축의 비용 절감 및 활용성 증대를 위해 클라우드 및 포그 컴퓨팅 기술을 도입하여 농업 기상 정보 서비스 시스템이 설계되어야 한다. 또한, 기상자료와 농산물 가격 정보와 같은 환경자료와 경영정보를 동시에 제공할 수 있는 정보 시스템을 구축하여 활용도가 높은 농업 기상 서비스 시스템이 구축되어야 할 것이다. 이와 함께, 농업인 뿐만 아니라 소비자까지도 고려된 모바일 어플리케이션의 설계 및 개발을 통해, 4차 산업혁명의 주요 기술들이 농업 분야에서 확산될 수 있도록 지속적인 노력이 필요하다. 이러한 정보 시스템은 농업 분야 이해당사자에게 수요자 맞춤형 농림기상정보를 제공하여 기후스마트 농업 관련 기술의 개발과 도입을 촉진시킬 수 있을 것이다.
형태소는 더 이상 분리하면 본래의 의미를 잃어버리는 말의 최소 단위이다. 한국어에서 문장은 공백으로 구분되는 어절(단어)의 조합이다. 형태소 분석은 어절 단위의 문장을 입력 받아서 문맥 정보를 활용하여 형태소 단위로 나누고 각 형태소에 적절한 품사 기호를 부착한 결과를 생성하는 것이다. 한국어 자연어 처리에서 형태소 분석은 가장 핵심적인 태스크다. 형태소 분석의 성능 향상은 한국어 자연어 처리 태스크의 성능 향상에 직결된다. 최근 형태소 분석은 주로 기계 번역 관점에서 연구가 진행되고 있다. 기계 번역은 신경망 모델 등으로 어느 한 도메인의 시퀀스(문장)를 다른 도메인의 시퀀스(문장)로 바꾸는 것이다. 형태소 분석을 기계 번역 관점에서 보면 어절 도메인에 속하는 입력 시퀀스를 형태소 도메인 시퀀스로 변환하는 것이다. 본 논문은 한국어 형태소 분석을 위한 딥러닝 모델을 제안한다. 본 연구에서 사용하는 모델은 기계 번역에서 높은 성능을 기록한 BERT-fused 모델을 기반으로 한다. BERT-fused 모델은 기계 번역에서 대표적인 Transformer 모델과 자연어 처리 분야에 획기적인 성능 향상을 이룬 언어모델인 BERT를 활용한다. 실험 결과 형태소 단위 F1-Score 98.24의 성능을 얻을 수 있었다.
실시간 범람 모니터링을 위해 인공위성 SAR영상을 활용하는 수체탐지에 대한 필요성이 대두되었다. 주야와 기상에 상관없이 주기적으로 촬영 가능한 인공위성 SAR 영상은 육지와 물의 영상학적 특징이 달라 수체탐지에 적합하나, 스페클 노이즈와 영상별 상이한 밝기 값 등의 한계를 내포하여 다양한 시기에 촬영된 영상에 일괄적으로 적용 가능한 수체탐지 알고리즘 개발이 쉽지 않다. 이를 위해 본 연구에서는 Convolutional Neural Networks (CNN)기반 모델인 U-Net 아키텍처에 레이어의 조합인 모듈을 추가하여 별도의 전처리 없이 수체탐지의 정확도 향상 방법을 제시하였다. 풀링 레이어의 조합을 활용하여 형태학적 연산처리 효과를 제공하는 Morphology Module과 전통적인 경계탐지 알고리즘의 가중치를 대입한 컨볼루션 레이어를 사용하여 경계 학습을 강화시키는 Edge-enhanced Module의 다양한 버전을 테스트하여, 최적의 모듈 구성을 도출하였다. 최적의 모듈 버전으로 판단된 min-pooling과 max-pooling이 연속으로 이어진 레이어와 min-pooling로 구성된 Morphology 모듈과 샤를(Scharr) 필터를 적용한 Edge-enhanced 모듈의 산출물을 U-Net 모델의 conv 9에 입력자료로 추가하였을 때, 정량적으로 9.81%의 F1-score 향상을 보여주었으며, 기존의 U-Net 모델이 탐지하지 못한 작은 수체와 경계선을 보다 세밀하게 탐지할 수 있는 성능을 정성적 평가를 통해 확인하였다.
현재 자율주행차량 시장은 3레벨 자율주행차량을 상용화하고 있으나, 안정성의 문제로 완전 자율주행 중에도 사고가 발생할 가능성이 있다. 실제로 자율주행차량은 81건의 사고를 기록하고 있다. 3레벨과 다르게 4레벨 이후의 자율주행차량은 긴급상황을 스스로 판단하고 대처해야 하기 때문이다. 따라서 본 논문에서는 CNN을 통하여 차량 외부의 정보를 수집하여 저장하고, 저장된 정보와 차량 센서 데이터를 이용하여 차량이 처한 위기 상황을 0~1 사이의 수치로 출력하는 차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템을 제안한다. 차량 위기 감지 시스템은 CNN기반 신경망 모델을 사용하여 주변 차량과 보행자 데이터를 수집하는 차량 외부 상황 수집 모듈과 차량 외부 상황 수집 모듈의 출력과 차량 내부 센서 데이터를 이용하여 차량이 처한 위기 상황을 수치화하는 차량 위기 상황 판단 모듈로 구성된다. 실험 결과, VESCM의 평균 연산 시간은 55ms 였고, R-CNN은 74ms, CNN은 101ms였다. 특히, R-CNN은 보행자수가 적을 때 VESCM과 비슷한 연산 시간을 보이지만, 보행자 수가 많아 질수록 VESCM보다 많은 연산 시간을 소요했다. 평균적으로 VESCM는 R-CNN보다 25.68%, CNN보다 45.54% 더 빠른 연산 시간을 가졌고, 세 모델의 정확도는 모두 80% 이하로 감소하지 않으며 높은 정확도를 보였다.
신경망 기반 스타일 전이 기법은 영상의 고차원적 구조적 특징을 반영하여 높은 품질의 스타일 전이 결과를 제공함으로써 최근 크게 주목받고 있다. 본 논문은 이러한 신경망 기반 스타일 전이의 GPU 메모리 제한에 따른 해상도 한계에 대한 문제를 다룬다. 신경망 출력이 가진 제한적 수용장 특징을 바탕으로, 부분 영상 기반의 스타일 전이 손실함수 경사도 연산이 전체 영상을 대상으로 구한 경사도 연산과 동일한 결과를 생성할 수 있을 것으로 기대할 수 있다. 이러한 아이디어를 기반으로, 본 논문에서는, 스타일 전이 손실함수의 각 구성 요소에 대한 경사도 연산 구조를 분석하고, 이를 통해 부분 영상의 생성 및 패딩에 대한 필요조건을 구하고, 전체 영상의 신경망 출력에 좌우되는 경사도 연산 요구 데이터를 확인하여 구조화함으로써 재귀적 초고해상도 스타일 전이 알고리즘을 개발하였다. 제안된 기법은, 사용하는 GPU 메모리가 처리할 수 있는 크기로 초고해상도 입력을 분할하여 스타일 전이를 수행함으로써, GPU 메모리 한계에 따른 해상도 제한을 받지 않으며, 초고해상도 스타일 전이에서만 감상할 수 있는 독특한 세부 영역의 전이 스타일 특징을 제공할 수 있다.
최근 농가의 사과 품질 선별 작업에서 인적자원의 한계를 극복하기 위해 합성곱 신경망(CNN) 기반 시스템이 개발되고 있다. 그러나 합성곱 신경망은 동일한 크기의 이미지만을 입력받기 때문에 샘플링 등의 전처리 과정이 요구될 수 있으며, 과도 샘플링의 경우 화질 저하, 블러링 등 원본 이미지의 정보손실 문제가 발생한다. 본 논문에서는 위 문제를 최소화하기 위하여, 원본 이미지의 패치 기반 그래프를 생성하고 그래프 트랜스포머 모델의 랜덤워크 기반 위치 인코딩 방법을 제안한다. 위 방법은 랜덤워크 알고리즘 기반 위치정보가 없는 패치들의 위치 임베딩 정보를 지속적으로 학습하고, 기존 그래프 트랜스포머의 자가 주의집중 기법을 통해 유익한 노드정보들을 집계함으로써 최적의 그래프 구조를 찾는다. 따라서 무작위 노드 순서의 새로운 그래프 구조와 이미지의 객체 위치에 따른 임의의 그래프 구조에서도 강건한 성질을 가지며, 좋은 성능을 보여준다. 5가지 사과 품질 데이터셋으로 실험하였을 때, 다른 GNN 모델보다 최소 1.3%에서 최대 4.7%의 학습 정확도가 높았으며, ResNet18 모델의 23.52M보다 약 15% 적은 3.59M의 파라미터 수를 보유하여 연산량 절감에 따른 빠른 추론 속도를 보이며 그 효과를 증명한다.
현재 자율주행 차량 시장은 3레벨 자율주행 차량의 상용화를 넘어 4레벨 자율주행 차량을 연구, 개발하고 있다. 4레벨 자율주행 차량에서 가장 주목되는 부분은 차량의 안정성이다. 3레벨과 다르게 4레벨의 자율주행 차량은 긴급상황을 차량이 직접 대처해야 하기 때문이다. 본 논문에서는 긴급상황에서의 즉각적인 반응보다는 차량의 목적지가 정해진 순간 사고 가능성이 가장 낮은 경로를 결정하는 Optimized Vehicle Routing System (OVRS)을 제안한다. OVRS는 RSU 통신으로 수집한 도로와 주변 차량 정보를 분석하여 도로의 위험성을 예측하여 주행 중인 차량이 더 안전하고 빠른 길로 주행할 수 있도록 경로를 설정한다. OVRS는 네트워크 라우팅 방식처럼 도로에 있는 RSU를 통하여 도로 상황에 따른 경로 안내를 실행하기 때문에 차량의 안정성을 더욱 높일 수 있다. 실험 결과, OVRS모듈 중 하나인 ASICM의 RPNN은 CNN보다 약 17%, LSTM보다 약 40% 더 좋은 연산 시간을 보였다. 그러나 해당 연구가 PC를 이용한 가상환경에서 실행되었기 때문에, VPDM의 사고 가능성을 실제로 검증하지 못했다. 따라서 향후 사고 데이터 수집으로 인한 VPDM의 정확도 높은 실험과 실제 차량 및 RSU에서 실제 도로를 대상으로 한 실험이 진행되어야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.