• 제목/요약/키워드: Deep level defects

검색결과 59건 처리시간 0.024초

Temperature-dependent photoluminescence study on aluminum-doped nanocrystalline ZnO thin films by sol-gel dip-coating method

  • Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Kim, Soaram;Leem, Jae-Young
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.131-133
    • /
    • 2012
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons (D0X), two-electron satellite (TES), free-to-neutral-acceptors (e,A0), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for D0X in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for D0X transitions.

  • PDF

DLTS기법에 의한 MOV소자의 교류과전경시 변화특성에 관한 연구 (A study on the degradation of the AC stressed MOV by using of the DLTS technique)

  • 이동희
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권7호
    • /
    • pp.719-726
    • /
    • 1996
  • DLTS measurements were performed to study the annealing induced changes of the trap centers in MOV and to shed more light on the stability mechanism of the MOV. Two electron traps, Ec-0.26[eV] and Ec-(O.2-0.3)[eV], were observed in the unannealed samples in large quantities(7-9 X 1014[CM 3]), whereas the three electron traps Ec-0.17 [eV], Ec-0.26[eV] and Ec-(O.2-0.3)[eV] were observed far less in the annealed samples. The minima in the Ec-0.26[eV] trap density, coupled with the presented results that unannealed devices are unstable whereas 600.deg. C annealed devices are most stable, suggests that the instability of the MOV under long term electrical stressing is related to the Ec-0.26[eV] trap. This results support that the ion migration model for the device instability where the Ec-0.26[eV] defects may be the interstitial zinc or the migrating ions. The interstitial zinc originated as a result of the nonstoichiometric nature of ZnO might cause the degradation of the I-V characteristics of the MOV with long term electrical stressing.

  • PDF

이온빔으로 질화처리된 사파이어기판위에 성장한 ZnO박막의 특성 (Properties of ZnO thin film grown on $Al_2O_3$ substrate pretremented by nitrogen ion beam)

  • 박병준;정연식;박종용;최두진;최원국;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.413-416
    • /
    • 2004
  • In this study, zinc oxide(ZnO) having large misfit(18.2%) with sapphire was tried to be grown on very thin nitride buffer layers. For the creation of various kinds of nitride buffer layer, sapphire surface was modified by an irradiation of nitrogen ion beam with low energy generated from stationary plasma thruster(SPT) at room temperature. After the irradiation of ion beam, Al-N and Al-O-N bonding was identified to be formed as nitride buffet layers. Surface morphology was measured by AFM and then ZnO growth was followed by pulsed laser deposition(PLD). Their properties are analyzed by XRD, AFM, TEM, and PL. We observed that surface morphology was improved and deep level emission related to defects was almost vanished in PL spectra from the ZnO grown on nitride buffer layer.

  • PDF

Ball Grid Array Solder Void Inspection Using Mask R-CNN

  • Kim, Seung Cheol;Jeon, Ho Jeong;Hong, Sang Jeen
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.126-130
    • /
    • 2021
  • The ball grid array is one of the packaging methods that used in high density printed circuit board. Solder void defects caused by voids in the solder ball during the BGA process do not directly affect the reliability of the product, but it may accelerate the aging of the device on the PCB layer or interface surface depending on its size or location. Void inspection is important because it is related in yields with products. The most important process in the optical inspection of solder void is the segmentation process of solder and void. However, there are several segmentation algorithms for the vision inspection, it is impossible to inspect all of images ideally. When X-Ray images with poor contrast and high level of noise become difficult to perform image processing for vision inspection in terms of software programming. This paper suggests the solution to deal with the suggested problem by means of using Mask R-CNN instead of digital image processing algorithm. Mask R-CNN model can be trained with images pre-processed to increase contrast or alleviate noises. With this process, it provides more efficient system about complex object segmentation than conventional system.

적외선검출소자를 위한 GaSb 결정 및 MBE로 성장한 Gasb/SI-GaAs 박막의 진성결함에 관한 연구 (Study on the Intrinsic Defects in Undoped GaSb Bulk and MBE-grown GaSb/SI-GaAs Epitaxial Layers for Infrared Photodetectors)

  • 김준오;신현욱;최정우;이상준;노삼규
    • 한국진공학회지
    • /
    • 제18권2호
    • /
    • pp.127-132
    • /
    • 2009
  • Sb에 기초한 응력 초격자 적외선검출소자의 구성 물질인 도핑하지 않은 기판 GaSb 결정과 GaSb/SI-GaAs 박막에 잔존하고 있는 진성결함 (intrinsic defect)을 비교 조사하였다. 상온 근처 (250 K)까지 광여기 발광 (PL)을 보이는 GaSb 결정에서의 발광 에너지의 온도의존성으로부터, 밴드갭 에너지에 관한 경험식인 Varshni 함수의 파라미터 ($E_o$, $\alpha$, $\beta$)를 결정하였다. GaAs 기판 위에 성장된 이종 GaSb 박막에서는 GaSb 주요 진성결함으로 알려져 있는 29 meV의 이온화 에너지를 가지는 위치반전 (antisite) Ga ([$Ga_{Sb}$]) 결함과 함께 위치반전 Sb ([$Sb_{Ga}$])와의 복합결함 ([$Ga_{Sb}-Sb_{Ga}$])과 관련된 것으로 분석된 732/711 meV의 한 쌍의 깊은준위 (deep level)가 관측되었다. PL의 온도 및 여기출력 의존성을 분석하여, Sb-rich상태에서 성장된 GaSb 박막에서는 잉여 Sb의 자발확산 (self-diffusion)에 의하여 치환된 위치전도 [$Ga_{Sb}$] 및 [$Sb_{Ga}$]가 결합하여 [$Ga_{Sb}-Sb_{Ga}$]의 깊은준위를 형성하는 것으로 해석되었다.

양막과 콜라겐을 이용한 생체 적합 드레싱 소재 개발 및 백서 창상치유 실험 (DEVELOPMENT OF BIOCOMPATIBLE DRESSING MATERIAL MADE OF COLLAGEN AND AMNIOTIC MEMBRANE AND WOUND HEALING EXPERIMENT IN RAT)

  • 안강민;이지호;이의룡;이종호;이종원;김성포;양은경;김기호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권3호
    • /
    • pp.189-199
    • /
    • 2006
  • Purpose of study: Partial thickness skin graft is the golden standard regimen for full-thickness skin defect caused by burn or trauma. However, in case of extensive burns of more than 50% of total body surface area, the donor site is not sufficient to cover all defects. As a second choice, allograft, xenograft and synthetic materials have been used to treat skin defect. Among them the amniotic membrane(AM) was used as a biological dressing for centuries because of its potential for wound healing. In this study, quantification of EGF in AM and effect of AM-collagen complex on full thickness skin defects was examined. Materials & Methods: The concentration of EGF in fresh, deep frozen and freeze-dried AM was evaluated by ELISA. EGF-R immunostaining was performed in freeze-dried AM. SD rats weighing 250${\sim}$300g was used for wound healing experiment. Three full thickness skin defects(28mm diameter) were made on dorsal surface of SD rat. The control group was covered by Vaselin gauze and AM-collagen complex and $Terudermis^{(R)}$. was grafted in two other defects. Healing area, Cinamon's score were evaluated before biopsy. Grafted sites were retrieved at 3 days, 1 week, 2 weeks and 4 weeks after operation. H & E and Factor VIII immunohistochemical stain was performed to evaluate the microscopic adhesion and structural integrity and microvessel formation. Results: 1. EGF concentration of fresh, deep frozen and freeze-dried AM showed similar level and EGF-R was stained in epithelial layer of freeze-dried AM. 2. At 4 weeks after grafting, the healing area of AM-collagen and Terudermis group was 99.29${\pm}$0.71% and 99.19${\pm}$0.77 of original size. However, that of control group was 24.88${\pm}$2.90. 3. The Cinamon's score of AM-Collagen and $Terudermis^{(R)}$. group at 4 weeks was 15.6${\pm}$1.26 and 14.6${\pm}$3.13 and that of control group was 3.7${\pm}$0.95. Significant difference was observed among control and experimental groups(p<0.05). 4. Histologic examination revealed that AM protected leukocyte infiltration and epithelial migration was nearly completed at 4 weeks. $Terudermis^{(R)}$. group showed mild neutrophil infiltration until 2 weeks and completion of epithelization at 4 weeks. Control group showed massive leukocyte infiltration until 4 weeks. 5. Microvessels were increased sharply at 1 week and control group at 1 and 4 week showed significant differences with $Terudermis^{(R)}$. group of same interval(p<0.05) but no differences were found with AM group(p<0.05). Conclusion: EGF and EGF-R were well preserved in freeze-dried AM. AM attached to collagen acted as excellent biologic dressing which had similar effect with $Terudermis^{(R)}$. AM showed anti-inflammatory action and healing was completed at 4 weeks after full-thickness skin defect.

Oxygen Plasma Effect on AlGaN/GaN HEMTs Structure Grown on Si Substrate

  • Seo, Dong Hyeok;Kang, Sung Min;Lee, Dong Wha;Ahn, Du Jin;Park, Hee Bin;Ahn, Youn Jun;Kim, Min Soo;Kim, Yu Kyeong;Lee, Ho Jae;Song, Dong Hun;Kim, Jae Hee;Bae, Jin Su;Cho, Hoon Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.420-420
    • /
    • 2013
  • We investigated oxygen plasma effect on defect states near the interface of AlGaN/GaN High Electron Mobility Transistor (HEMT) structure grown on a silicon substrate. After the plasma treatment, electrical properties were evaluated using a frequency dependant Capacitance-Voltage (C-V) and a temperature dependant C-V measurements, and a deep level transient spectroscopy (DLTS) method to study the change of defect densities. In the depth profile resulted from the temperature dependant C-V, a sudden decrease in the carrier concentration for two-dimensional electron gas (2DEG) nearby 250 K was observed. In C-V measurement, the interface states were improved in case of the oxygen-plasma treated samples, whereas the interface was degraded in case of the nitrogen-plasma treated sample. In the DLTS measurement, it was observed the two kinds of defects well known in AlGaN/GaN structure grown on sapphire substrate, which have the activation energies of 0.15 eV, 0.25 eV below the conduction band. We speculate that this defect state in AlGaN/GaN on the silicon substrate is caused from the decrease in 2DEG's carrier concentrations. We compared the various DLTS signals with filling pulse times to identify the characteristics of the newly found defect. In the filling pulse time range under the 80 us, the activation energies changed as the potential barrier model. On the other hand, in the filling pulse time range above the 80 us, the activation energies changed as the extended potential model. Therefore, we suggest that the found defect in the AlGaN/GaN/Si structure could be the extended defect related with AlGa/N/GaN interface states.

  • PDF

n-ZnO/i-ZnO/p-GaN:Mg 이종접합을 이용한 UV 발광 다이오드 (Ultraviolet LEDs using n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction)

  • 한원석;김영이;공보현;조형균;이종훈;김홍승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.50-50
    • /
    • 2008
  • ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.

  • PDF

라디칼 빔 보조 분자선 증착법 (Radical Beam Assisted Molecular Beam Epitaxy) 법에 의해 성장된 ZnO 박막의 발광 특성에 관한 연구 (A Study of the Photoluminescence of ZnO Thin Films Deposited by Radical Beam Assisted Molecular Beam Epitaxy)

  • 서효원;변동진;최원국
    • 한국재료학회지
    • /
    • 제13권6호
    • /
    • pp.347-351
    • /
    • 2003
  • II-Ⅵ ZnO compound semiconductor thin films were grown on $\alpha$-Al$_2$O$_3$(0001) single crystal substrate by radical beam assisted molecular beam epitaxy and the optical properties were investigated. Zn(6N) was evaporated using Knudsen cell and O radical was assisted at the partial pressure of 1$\times$10$^{4}$ Torr and radical beam source of 250-450 W RF power. In $\theta$-2$\theta$ x-ray diffraction analysis, ZnO thin film with 500 nm thickness showed only ZnO(0002)and ZnO(0004) peaks is believed to be well grown along c-axis orientation. Photoluminescence (PL) measurement using He-Cd ($\lambda$=325 nm) laser is obtained in the temperature range of 9 K-300 K. At 9 K and 300 K, only near band edge (NBE) is observed and the FWHM's of PL peak of the ZnO deposited at 450 RF power are 45 meV and 145 meV respectively. From no observation of any weak deep level peak even at room temperature PL, the ZnO grains are regarded to contain very low defect density and impurity to cause the deep-level defects. The peak position of free exciton showed slightly red-shift as temperature was increased, and from this result the binding energy of free exciton can be experimentally determined as much as $58\pm$0.5 meV, which is very closed to that of ZnO bulk. By van der Pauw 4-point probe measurement, the grown ZnO is proved to be n-type with the electron concentration($n_{e}$ ) $1.69$\times$10^{18}$$cm^3$, mobility($\mu$) $-12.3\textrm{cm}^2$/Vㆍs, and resistivity($\rho$) 0.30 $\Omega$$\cdot$cm.

Al Doped ZnO층 적용을 통한 ZnO 박막 트랜지스터의 전기적 특성과 안정성 개선 (Improvement of Electrical Performance and Stability in ZnO Channel TFTs with Al Doped ZnO Layer)

  • 엄기윤;정광석;윤호진;김유미;양승동;김진섭;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.291-294
    • /
    • 2015
  • Recently, ZnO based oxide TFTs used in the flexible and transparent display devices are widely studied. To apply to OLED display switching devices, electrical performance and stability are important issues. In this study, to improve these electrical properties, we fabricated TFTs having Al doped Zinc Oxide (AZO) layer inserted between the gate insulator and ZnO layer. The AZO and ZnO layers are deposited by Atomic layer deposition (ALD) method. I-V transfer characteristics and stability of the suggested devices are investigated under the positive gate bias condition while the channel defects are also analyzed by the photoluminescence spectrum. The TFTs with AZO layer show lower threshold voltage ($V_{th}$) and superior sub-threshold slop. In the case of $V_{th}$ shift after positive gate bias stress, the stability is also better than that of ZnO channel TFTs. This improvement is thought to be caused by the reduced defect density in AZO/ZnO stack devices, which can be confirmed by the photoluminescence spectrum analysis results where the defect related deep level emission of AZO is lower than that of ZnO layer.