• 제목/요약/키워드: Deep learning segmentation

검색결과 407건 처리시간 0.029초

Comparison of Fine-Tuned Convolutional Neural Networks for Clipart Style Classification

  • Lee, Seungbin;Kim, Hyungon;Seok, Hyekyoung;Nang, Jongho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권4호
    • /
    • pp.1-7
    • /
    • 2017
  • Clipart is artificial visual contents that are created using various tools such as Illustrator to highlight some information. Here, the style of the clipart plays a critical role in determining how it looks. However, previous studies on clipart are focused only on the object recognition [16], segmentation, and retrieval of clipart images using hand-craft image features. Recently, some clipart classification researches based on the style similarity using CNN have been proposed, however, they have used different CNN-models and experimented with different benchmark dataset so that it is very hard to compare their performances. This paper presents an experimental analysis of the clipart classification based on the style similarity with two well-known CNN-models (Inception Resnet V2 [13] and VGG-16 [14] and transfers learning with the same benchmark dataset (Microsoft Style Dataset 3.6K). From this experiment, we find out that the accuracy of Inception Resnet V2 is better than VGG for clipart style classification because of its deep nature and convolution map with various sizes in parallel. We also find out that the end-to-end training can improve the accuracy more than 20% in both CNN models.

YOLOv4를 이용한 차량파손 검출 모델 개선 (Improving the Vehicle Damage Detection Model using YOLOv4)

  • 전종원;이효섭;한희일
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.750-755
    • /
    • 2021
  • 본 논문에서는 YOLOv4를 이용하여 차량의 부위별 파손현황을 검출하는 기법을 제안한다. 제안 알고리즘은 YOLOv4를 통해 차량의 부위와 파손을 각각 학습시킨 후 검출되는 바운딩 박스의 좌표 정보들을 추출하여 파손과 차량부위의 포함관계를 판단하는 알고리즘을 적용시켜 부위별 파손현황을 도출한다. 또한 성능비교의 객관성을 위하여 동일분야의 VGGNet을 이용한 기법, 이미지 분할과 U-Net 모델을 이용한 기법, Weproove.AI 딥러닝 모델 등을 대조 모델로 포함한다. 이를 통하여 제안 알고리즘의 성능을 비교, 평가하고 검출 모델의 개선 방안을 제안한다.

합성곱 신경망을 이용하는 수퍼픽셀 기반 사과잎 병충해의 분류 (Superpixel-based Apple Leaf Disease Classification using Convolutional Neural Network)

  • 김만배;최창열
    • 방송공학회논문지
    • /
    • 제25권2호
    • /
    • pp.208-217
    • /
    • 2020
  • 원예작물을 카메라로 촬영하여 병해충의 종류를 판단하려는 연구가 오랫동안 있어왔다. 일반적으로 영역분할로 병해충 영역을 추출하고, 통계적 특징을 추출한 후 다양한 기계학습 기법으로 병해충 종류를 판단한다. 최근에는 딥러닝의 종단간 학습으로 병해충을 판별하는 연구가 많이 진행되고 있다. 영역분할은 조명 등의 주변 환경 변화에 따라 만족스러운 성능이 어렵고, 전체 잎 영상을 사용하는 종단간 신경망은 학습 영상과 실제 영상과의 차이 때문에 실제 적용이 어려운 문제가 있다. 이를 해결하기 위해서 본 논문에서는 수퍼픽셀 및 합성곱신경망을 이용하는 병해충 분류 방법을 제안한다. 실험에서는 PlantVilllage의 사과 병충해 영상들을 이용하여 실험한 결과, 분류정확도는 전체영상과 수퍼픽셀이 각각 (98.29, 92.43)%이고, 다변량 F1-score는 각각 (0.98. 0.93)이다. 제안하는 수퍼픽셀 기법은 성능 측면에서 약간 저하되지만, 현실적으로 실제 환경에서 적용 가능함을 확인하였다.

코로나바이러스 감염증19 데이터베이스에 기반을 둔 인공신경망 모델의 특성 평가 (Evaluation of Deep-Learning Feature Based COVID-19 Classifier in Various Neural Network)

  • 홍준용;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권5호
    • /
    • pp.397-404
    • /
    • 2020
  • Coronavirus disease(COVID-19) is highly infectious disease that directly affects the lungs. To observe the clinical findings from these lungs, the Chest Radiography(CXR) can be used in a fast manner. However, the diagnostic performance via CXR needs to be improved, since the identifying these findings are highly time-consuming and prone to human error. Therefore, Artificial Intelligence(AI) based tool may be useful to aid the diagnosis of COVID-19 via CXR. In this study, we explored various Deep learning(DL) approach to classify COVID-19, other viral pneumonia and normal. For the original dataset and lung-segmented dataset, the pre-trained AlexNet, SqueezeNet, ResNet18, DenseNet201 were transfer-trained and validated for 3 class - COVID-19, viral pneumonia, normal. In the results, AlexNet showed the highest mean accuracy of 99.15±2.69% and fastest training time of 1.61±0.56 min among 4 pre-trained neural networks. In this study, we demonstrated the performance of 4 pre-trained neural networks in COVID-19 diagnosis with CXR images. Further, we plotted the class activation map(CAM) of each network and demonstrated that the lung-segmentation pre-processing improve the performance of COVID-19 classifier with CXR images by excluding background features.

무인항공기를 이용한 딥러닝 기반의 소나무재선충병 감염목 탐지 (Pine Wilt Disease Detection Based on Deep Learning Using an Unmanned Aerial Vehicle)

  • 임언택;도명식
    • 대한토목학회논문집
    • /
    • 제41권3호
    • /
    • pp.317-325
    • /
    • 2021
  • 1988년 부산에서 처음 발병된 소나무재선충병(Pine Wilt Disease, PWD)은 우리나라 소나무에 막대한 피해를 주고 있는 심각한 질병이다. 정부에서는 2005년 소나무재선충병 방제특별법을 제정하고 피해지역의 소나무 이동 금지와 방제를 시행하고 있다. 하지만, 기존의 예찰 및 방제방법은 산악지형에서 동시다발적이고 급진적으로 발생하는 소나무재선충병을 줄이기에는 물리적, 경제적 어려움이 있다. 따라서 본 연구에서는 소나무재선충병 감염의심목을 효율적으로 탐지하기 위해 무인항공기를 이용한 영상자료를 바탕으로 딥러닝 객체인식 예찰 방법의 활용가능성을 제시하고자 한다. 소나무재선충병 피해목을 관측하기 위해서 항공촬영을 통해 영상 데이터를 획득하고 정사영상을 제작하였다. 그 결과 198개의 피해목이 확인되었으며, 이를 검증하기 위해서 접근이 불가한 급경사지나 절벽과 같은 곳을 제외하고 현장 조사를 진행하여 84개의 피해목을 확인할 수 있었다. 검증된 데이터를 가지고 분할방법인 SegNet과 검출방법인 YOLOv2를 이용하여 분석한 결과 성능은 각각 0.57, 0.77로 나타났다.

위성영상을 활용한 토지피복 분류 항목별 딥러닝 최적화 연구 (A Study on Deep Learning Optimization by Land Cover Classification Item Using Satellite Imagery)

  • 이성혁;이명진
    • 대한원격탐사학회지
    • /
    • 제36권6_2호
    • /
    • pp.1591-1604
    • /
    • 2020
  • 본 연구는 고해상도 위성영상을 딥러닝 알고리즘에 적용하여 토지피복을 분류하고 공간객체별 알고리즘의 성능 검증에 대한 연구이다. 이를 Fully Convolutional Network계열의 알고리즘을 선정하였으며, Kompasat-3 위성영상, 토지피복지도 및 임상도를 활용하여 데이터셋을 구축하였다. 구축된 데이터셋을 알고리즘에 적용하여 각각 최적 하이퍼파라미터를 산출하였다. 하이퍼파라미터 최적화 이후 최종 분류를 시행하였으며, 전체 정확도는 DeeplabV3+가 81.7%로 가장 높게 산정되었다. 그러나 분류 항목별로 정확도를 살펴보면, 도로 및 건물에서 SegNet이 가장 우수한 성능을 나타내었으며, 활엽수, 논의 항목에서 U-Net이 가장 높은 정확도를 보였다. DeeplabV3+의 경우 밭과 시설재배지, 초지 등에서 다른 두 모델보다 우수한 성능을 나타내었다. 결과를 통해 토지피복 분류를 위해 하나의 알고리즘 적용에 대한 한계점을 확인하였으며, 향후 공간객체별로 적합한 알고리즘을 적용한다면, 높은 품질의 토지피복분류 결과를 산출할 수 있을 것으로 기대된다.

심층 학습을 통한 암세포 광학영상 식별기법 (Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning)

  • 박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.374-376
    • /
    • 2021
  • 임상에서 암 관련 질병의 확진을 위해 영상장비를 이용한 기초 진단 이후 추가적인 방법으로 생체검사 등을 이용한 병리적 검사가 필수적이다. 이러한 생체검사를 진행하기 위해서는 전문지식을 가진 종양학자, 임상병리사 등의 도움과 최소한의 소요시간은 확진을 위해 반드시 필요하다. 최근 들어, 인공지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구들은 한정된 알고리즘을 기반으로 하여 세포의 종류와 정확도에 한계를 보인다. 본 연구에서 심층 학습의 일종인 합성곱 신경망을 통해 총 4가지의 암세포를 식별하는 방법을 제안한다. 세포 배양을 통해 얻은 광학영상을 OpenCV를 사용하여 세포의 위치 식별 및 이미지 분할과 같은 전처리 수행 후, EfficientNet을 통해 학습하였다. 모델은 EfficientNet을 기준으로 다양한 hyper parameter를 사용하고, InceptionV3을 학습하여 성능을 비교분석 하였다. 그 결과 96.8%의 높은 정확도로 세포를 분류하는 결과를 보였으며, 이러한 분석방법은 암의 확진에 도움이 될 것으로 기대한다.

  • PDF

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

RapidEye 위성영상을 이용한 작물재배지역 추정을 위한 FC-DenseNet의 활용성 평가 (Assessment of the FC-DenseNet for Crop Cultivation Area Extraction by Using RapidEye Satellite Imagery)

  • 성선경;나상일;최재완
    • 대한원격탐사학회지
    • /
    • 제36권5_1호
    • /
    • pp.823-833
    • /
    • 2020
  • 안정적인 작물 생산을 위하여 국내 농업지역에 대한 효과적인 작황 모니터링 기법의 요구가 증대되고 있다. 본 연구에서는 작물 재배지역 추출을 위하여 딥러닝 기법을 이용한 분류 모델을 개발하고, 이를 위성영상에 적용하고자 하였다. 이를 위하여, 식생분석에 유용한 blue, green, red, red-edge, NIR 밴드를 포함하고 있는 RapidEye 위성영상을 이용하여 작물 재배지역에 대한 훈련자료를 구축하고, 이를 활용하여 국내 양파 및 마늘 작물에 대한 재배면적을 추정하고자 하였다. 대기보정된 RapidEye 위성영상을 활용하여 훈련자료를 구축하였으며, 작물지역의 분류를 위하여 대표적인 의미론적 분할을 위한 딥러닝 모델인 FC-DenseNet을 이용하여 딥러닝 모델을 생성하였다. 최종적인 작물 재배지역은 지적도와의 결합을 통하여 객체 기반의 자료로 생성하였다. 실험결과, 대기보정된 훈련자료를 이용하여 학습된 FC-DenseNet 모델은 훈련에 사용되지 않은 타 지역의 작물 재배지역을 효과적으로 검출할 수 있음을 확인하였다.

Multi-Tasking U-net 기반 파프리카 병해충 진단 (Multi-Tasking U-net Based Paprika Disease Diagnosis)

  • 김서정;김형석
    • 스마트미디어저널
    • /
    • 제9권1호
    • /
    • pp.16-22
    • /
    • 2020
  • 본 연구에서는 Multi-Tasking U-net를 사용하여 영역 세분화 작업(Segmentation) 과 분류 작업(Classification) 이 동시에 수행되게 함으로써 파프리카 병과 충 진단을 수행하였다. 시설 농장의 파프리카에는 병의 종류가 다양하지 않다. 이 연구에서는 비교적 발생빈도가 높은 흰가루병과 응애에 의한 피해, 정상 잎 3개의 클래스에 대해서만 진단 할 수 있도록 하였다. 이를 위한 중추 모델로는 U-net을 사용하였다. 또, 이 모델의 Encoder와 Decoder의 최종 단을 활용하여 분류 작업과 영역 세분화 작업이 각 각 수행되게하여, U-net의 Encoder가 분류작업과 영역 세분화 작업에 공유되도록 하였다. 학습 데이터로는 정상 잎 680장, 응애에 의한 피해 잎 450장, 흰가루병 370장을 사용하였다. 테스트 데이터로는 정상 잎 130장, 응애에 의한 피해 잎 100장, 흰가루병 90장을 사용하였고, 이를 통한 테스트 결과로는 89%의 인식률을 얻었다.