• Title/Summary/Keyword: Deep learning enhancement

Search Result 118, Processing Time 0.028 seconds

Experimental and numerical investigation of RC frames strengthened with a hybrid seismic retrofit system

  • Luat, Nguyen-Vu;Lee, Hongseok;Shin, Jiuk;Park, Ji-Hun;Ahn, Tae-Sang;Lee, Kihak
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.563-577
    • /
    • 2022
  • This paper presents experimental and numerical investigations of a new seismic enhancement method for existing reinforced concrete (RC) frames by using an external sub-structure, the hybrid seismic retrofit method (HSRM) system. This retrofit system is an H-shaped frame bolt-connected to an existing RC frame with an infilled-concrete layer between their gaps. Two RC frames were built, one with and one without HSRM, and tested under cyclic loading. The experimental findings showed that the retrofitted RC frame was superior to the non-retrofitted specimen in terms of initial stiffness, peak load, and energy dissipation capacity. A numerical simulation using a commercial program was employed for verification with the experiments. The results obtained from the simulations were consistent with those from the experiments, indicating the finite element (FE) models can simulate the seismic behaviors of bare RC frame and retrofitted RC frame using HSRM.

Research on Chinese Microblog Sentiment Classification Based on TextCNN-BiLSTM Model

  • Haiqin Tang;Ruirui Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.842-857
    • /
    • 2023
  • Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speech and emoticons without comprehending users' emotional inclinations and grasping moral nuances. This study proposes a hybrid sentiment analysis model. Given the distinct nature of microblog comments, the model employs a combined stop-word list and word2vec for word vectorization. To mitigate local information loss, the TextCNN model, devoid of pooling layers, is employed for local feature extraction, while BiLSTM is utilized for contextual feature extraction in deep learning. Subsequently, microblog comment sentiments are categorized using a classification layer. Given the binary classification task at the output layer and the numerous hidden layers within BiLSTM, the Tanh activation function is adopted in this model. Experimental findings demonstrate that the enhanced TextCNN-BiLSTM model attains a precision of 94.75%. This represents a 1.21%, 1.25%, and 1.25% enhancement in precision, recall, and F1 values, respectively, in comparison to the individual deep learning models TextCNN. Furthermore, it outperforms BiLSTM by 0.78%, 0.9%, and 0.9% in precision, recall, and F1 values.

Deep Learning based Photo Horizon Correction (딥러닝을 이용한 영상 수평 보정)

  • Hong, Eunbin;Jeon, Junho;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.95-103
    • /
    • 2017
  • Horizon correction is a crucial stage for image composition enhancement. In this paper, we propose a deep learning based method for estimating the slanted angle of a photograph and correcting it. To estimate and correct the horizon direction, existing methods use hand-crafted low-level features such as lines, planes, and gradient distributions. However, these methods may not work well on the images that contain no lines or planes. To tackle this limitation and robustly estimate the slanted angle, we propose a convolutional neural network (CNN) based method to estimate the slanted angle by learning more generic features using a huge dataset. In addition, we utilize multiple adaptive spatial pooling layers to extract multi-scale image features for better performance. In the experimental results, we show our CNN-based approach robustly and accurately estimates the slanted angle of an image regardless of the image content, even if the image contains no lines or planes at all.

Analysis on Lightweight Methods of On-Device AI Vision Model for Intelligent Edge Computing Devices (지능형 엣지 컴퓨팅 기기를 위한 온디바이스 AI 비전 모델의 경량화 방식 분석)

  • Hye-Hyeon Ju;Namhi Kang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • On-device AI technology, which can operate AI models at the edge devices to support real-time processing and privacy enhancement, is attracting attention. As intelligent IoT is applied to various industries, services utilizing the on-device AI technology are increasing significantly. However, general deep learning models require a lot of computational resources for inference and learning. Therefore, various lightweighting methods such as quantization and pruning have been suggested to operate deep learning models in embedded edge devices. Among the lightweighting methods, we analyze how to lightweight and apply deep learning models to edge computing devices, focusing on pruning technology in this paper. In particular, we utilize dynamic and static pruning techniques to evaluate the inference speed, accuracy, and memory usage of a lightweight AI vision model. The content analyzed in this paper can be used for intelligent video control systems or video security systems in autonomous vehicles, where real-time processing are highly required. In addition, it is expected that the content can be used more effectively in various IoT services and industries.

Dual-scale BERT using multi-trait representations for holistic and trait-specific essay grading

  • Minsoo Cho;Jin-Xia Huang;Oh-Woog Kwon
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.82-95
    • /
    • 2024
  • As automated essay scoring (AES) has progressed from handcrafted techniques to deep learning, holistic scoring capabilities have merged. However, specific trait assessment remains a challenge because of the limited depth of earlier methods in modeling dual assessments for holistic and multi-trait tasks. To overcome this challenge, we explore providing comprehensive feedback while modeling the interconnections between holistic and trait representations. We introduce the DualBERT-Trans-CNN model, which combines transformer-based representations with a novel dual-scale bidirectional encoder representations from transformers (BERT) encoding approach at the document-level. By explicitly leveraging multi-trait representations in a multi-task learning (MTL) framework, our DualBERT-Trans-CNN emphasizes the interrelation between holistic and trait-based score predictions, aiming for improved accuracy. For validation, we conducted extensive tests on the ASAP++ and TOEFL11 datasets. Against models of the same MTL setting, ours showed a 2.0% increase in its holistic score. Additionally, compared with single-task learning (STL) models, ours demonstrated a 3.6% enhancement in average multi-trait performance on the ASAP++ dataset.

Very deep super-resolution for efficient cone-beam computed tomographic image restoration

  • Hwang, Jae Joon;Jung, Yun-Hoa;Cho, Bong-Hae;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.331-337
    • /
    • 2020
  • Purpose: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, the burden in terms of storage space and cost can be reduced and data can be managed more efficiently. In this study, a deep learning network for super-resolution was tested to restore compressed virtual CBCT images. Materials and Methods: Virtual CBCT image data were created with a publicly available online dataset (CQ500) of multidetector computed tomography images using CBCT reconstruction software (TIGRE). A very deep super-resolution (VDSR) network was trained to restore high-resolution virtual CBCT images from the low-resolution virtual CBCT images. Results: The images reconstructed by VDSR showed better image quality than bicubic interpolation in restored images at various scale ratios. The highest scale ratio with clinically acceptable reconstruction accuracy using VDSR was 2.1. Conclusion: VDSR showed promising restoration accuracy in this study. In the future, it will be necessary to experiment with new deep learning algorithms and large-scale data for clinical application of this technology.

Assessment of ASPECTS from CT Scans using Deep Learning

  • Khanh, Trinh Le Ba;Baek, Byung Hyun;Kim, Seul Kee;Do, Luu-Ngoc;Yoon, Woong;Park, Ilwoo;Yang, Hyung-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.573-579
    • /
    • 2019
  • Alberta Stroke Program Early Computed Tomographic Scoring (ASPECTS) is a 10-point CT-scan score designed to quantify early ischemic changes in patients with acute ischemic stroke. However, an assessment of ASPECTS remains a challenge for neuroradiologists in stroke centers. The purpose of this study is to develop an automated ASPECTS scoring system that provides decision-making support by utilizing binary classification with three-dimensional convolutional neural network to analyze CT images. The proposed method consists of three main steps: slice filtering, contrast enhancement and image classification. The experiments show that the obtained results are very promising.

An Adaptation Method in Noise Mismatch Conditions for DNN-based Speech Enhancement

  • Xu, Si-Ying;Niu, Tong;Qu, Dan;Long, Xing-Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4930-4951
    • /
    • 2018
  • The deep learning based speech enhancement has shown considerable success. However, it still suffers performance degradation under mismatch conditions. In this paper, an adaptation method is proposed to improve the performance under noise mismatch conditions. Firstly, we advise a noise aware training by supplying identity vectors (i-vectors) as parallel input features to adapt deep neural network (DNN) acoustic models with the target noise. Secondly, given a small amount of adaptation data, the noise-dependent DNN is obtained by using $L_2$ regularization from a noise-independent DNN, and forcing the estimated masks to be close to the unadapted condition. Finally, experiments were carried out on different noise and SNR conditions, and the proposed method has achieved significantly 0.1%-9.6% benefits of STOI, and provided consistent improvement in PESQ and segSNR against the baseline systems.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

Deep Learning Architectures and Applications (딥러닝의 모형과 응용사례)

  • Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.