• Title/Summary/Keyword: Deep learning based control

Search Result 237, Processing Time 0.025 seconds

Development of Camera-based Character Creation and Motion Control System using StyleGAN Deep Learning Technology (StyleGAN 딥러닝 기술을 활용한 카메라 기반 캐릭터 생성 및 모션 제어 시스템 개발)

  • Lee, Jeong-Hun;Kim, Ju-Hyeong;Shin, Dong-hyeon;Yang, Jae-hyeong;Chang, Moon-soo
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.934-936
    • /
    • 2022
  • 현재 사회적인(COVID-19) 영향으로 메타버스에 대한 수요가 급증하였지만, 메타버스 플랫폼 진입을 지원하는 XR(AR/VR) 장비의 높은 가격대와 전문성 요구로 폭넓은 수요층을 포괄하기 어려운 상황이다. 본 논문에서는 이러한 수요층의 어려움을 개선하고자 웹 캠이나 스마트폰 카메라로 생성된 개인의 사진 이미지를 StyleGAN 딥러닝 기술과 접목시켜 캐릭터를 생성해 Mediapipe를 활용하여 모션 측정 및 제어를 처리하는 서비스를 제안하여 메타버스 시장의 대중화에 기여하고자 한다.

LSTM-based aerodynamic force modeling for unsteady flows around structures

  • Shijie Liu;Zhen Zhang;Xue Zhou;Qingkuan Liu
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.147-160
    • /
    • 2024
  • The aerodynamic force is a significant component that influences the stability and safety of structures. It has unstable properties and depends on computer precision, making its long-term prediction challenging. Accurately estimating the aerodynamic traits of structures is critical for structural design and vibration control. This paper establishes an unsteady aerodynamic time series prediction model using Long Short-Term Memory (LSTM) network. The unsteady aerodynamic force under varied Reynolds number and angles of attack is predicted by the LSTM model. The input of the model is the aerodynamic coefficients of the 1 to n sample points and output is the aerodynamic coefficients of the n+1 sample point. The model is predicted by interpolation and extrapolation utilizing Unsteady Reynolds-average Navier-Stokes (URANS) simulation data of flow around a circular cylinder, square cylinder and airfoil. The results illustrate that the trajectories of the LSTM prediction results and URANS outcomes are largely consistent with time. The mean relative error between the forecast results and the original results is less than 6%. Therefore, our technique has a prospective application in unsteady aerodynamic force prediction of structures and can give technical assistance for engineering applications.

Key-point detection of fruit for automatic harvesting of oriental melon (참외 자동 수확을 위한 과일 주요 지점 검출)

  • Seung-Woo Kang;Jung-Hoon Yun;Yong-Sik Jeong;Kyung-Chul Kim;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • In this study, we suggested a key-point detection method for robot harvesting of oriental melon. Our suggested method could be used to detect the detachment part and major composition of oriental melon. We defined four points (harvesting point, calyx, center, bottom) based on tomato with characteristics similar to those of oriental melon. The evaluation of estimated key-points was conducted by pixel error and PDK (percentage of detected key-point) index. Results showed that the average pixel error was 18.26 ± 16.62 for the x coordinate and 17.74 ± 18.07 for the y coordinate. Considering the resolution of raw images, these pixel errors were not expected to have a serious impact. The PDK score was found to be 89.5% PDK@0.5 on average. It was possible to estimate oriental melon specific key-point. As a result of this research, we believe that the proposed method can contribute to the application of harvesting robot system.

Development and effect of hybrid simulation program for nursing students: focusing on a case of pediatric cardiac catheterization in Korea: quasi-experimental study

  • Eunju Jin;Hyunju Kang
    • Child Health Nursing Research
    • /
    • v.30 no.4
    • /
    • pp.277-287
    • /
    • 2024
  • Purpose: Hybrid simulation has emerged to increase the practicality of simulation training by combining simulators and standardized patient (SP) that implement realistic clinical environments at a high level. This study aimed to develop a hybrid simulation program focused on case of pediatric cardiac catheterization and to evaluate its effectiveness. Methods: The hybrid simulation program was developed according to the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) model. And deep learning-based analysis program was used to analyze non-verbal communication with SP and applied it for debriefing sessions. To verify the effect of the program, a quasi-experimental study using a random assignment design was conducted. In total, 48 nursing students (n=24 in the experimental group; n=24 in the control group) participated in the study. Results: Knowledge (F=3.53, p=.038), confidence in clinical performance (F=9.73, p<.001), and communication self-efficacy (F=5.20, p=.007) showed a significant difference in both groups and interaction between time points, and the communication ability of the experimental group increased significantly (t=3.32, p=.003). Conclusion: Hybrid simulation program developed in this study has been proven effective, it can be implemented in child nursing education. Future research should focus on developing and incorporating various hybrid simulation programs using SP into the nursing curriculum and evaluating their effectiveness.

Interface Establishment between Reinforcement Learning Algorithm and External Analysis Program for AI-based Automation of Bridge Design Process (AI기반 교량설계 프로세스 자동화를 위한 강화학습 알고리즘과 외부 해석프로그램 간 인터페이스 구축)

  • Kim, Minsu;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.403-408
    • /
    • 2021
  • Currently, in the design process of civil structures such as bridges, it is common to make final products by repeating the process of redesigning, if the initial design is found to not meet the standards after a structural review. This iterative process extends the design time, and causes inefficient consumption of engineering manpower, which should be put into higher-level design, on simple repetitive mechanical work. This problem can be resolved by automating the design process, but the external analysis program used in the design process has been the biggest obstacle to such automation. In this study, we constructed an AI-based automation system for the bridge design process, including an interface that could control both a reinforcement learning algorithm, and an external analysis program, to replace the repetitive tasks in the current design process. The prototype of the system built in this study was developed for a 2-span RC Rahmen bridge, which is one of the simplest bridge systems. In the future, it is expected that the developed interface system can be utilized as a basic technology for linking the latest AI with other types of bridge designs.

Real-Time License Plate Detection Based on Faster R-CNN (Faster R-CNN 기반의 실시간 번호판 검출)

  • Lee, Dongsuk;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.511-520
    • /
    • 2016
  • Automatic License Plate Detection (ALPD) is a key technology for a efficient traffic control. It is used to improve work efficiency in many applications such as toll payment systems and parking and traffic management. Until recently, the hand-crafted features made for image processing are used to detect license plates in most studies. It has the advantage in speed. but can degrade the detection rate with respect to various environmental changes. In this paper, we propose a way to utilize a Faster Region based Convolutional Neural Networks (Faster R-CNN) and a Conventional Convolutional Neural Networks (CNN), which improves the computational speed and is robust against changed environments. The module based on Faster R-CNN is used to detect license plate candidate regions from images and is followed by the module based on CNN to remove False Positives from the candidates. As a result, we achieved a detection rate of 99.94% from images captured under various environments. In addition, the average operating speed is 80ms/image. We implemented a fast and robust Real-Time License Plate Detection System.

Web based Customer Power Demand Variation Estimation System using LSTM (LSTM을 이용한 웹기반 수용가별 전력수요 변동성 평가시스템)

  • Seo, Duck Hee;Lyu, Joonsoo;Choi, Eun Jeong;Cho, Soohwan;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.587-594
    • /
    • 2018
  • The purpose of this study is to propose a power demand volatility evaluation system based on LSTM and not to verify the accuracy of the demand module which is a core module, but to recognize the sudden change of power pattern by using deeplearning in the actual power demand monitoring system. Then we confirm the availability of the module. Also, we tried to provide a visualized report so that the manager can determine the fluctuation of the power usage patten by applying it as a module to the web based system. It is confirmed that the power consumption data shows a certain pattern in the case of government offices and hospitals as a result of implementation of the volatility evaluation system. On the other hand, in areas with relatively low power consumption, such as residential facilities, it was not appropriate to evaluate the volatility.

Development of T2DM Prediction Model Using RNN (RNN을 이용한 제2형 당뇨병 예측모델 개발)

  • Jang, Jin-Su;Lee, Min-Jun;Lee, Tae-Ro
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.249-255
    • /
    • 2019
  • Type 2 diabetes mellitus(T2DM) is included in metabolic disorders characterized by hyperglycemia, which causes many complications, and requires long-term treatment resulting in massive medical expenses each year. There have been many studies to solve this problem, but the existing studies have not been accurate by learning and predicting the data at specific time point. Thus, this study proposed a model using RNN to increase the accuracy of prediction of T2DM. This work propose a T2DM prediction model based on Korean Genome and Epidemiology study(Ansan, Anseong Korea). We trained all of the data over time to create prediction model of diabetes. To verify the results of the prediction model, we compared the accuracy with the existing machine learning methods, LR, k-NN, and SVM. Proposed prediction model accuracy was 0.92 and the AUC was 0.92, which were higher than the other. Therefore predicting the onset of T2DM by using the proposed diabetes prediction model in this study, it could lead to healthier lifestyle and hyperglycemic control resulting in lower risk of diabetes by alerted diabetes occurrence.

Topophilia Convergence Science Education for Enhancing Learning Capabilities in the Age of Artificial Intelligence Based on the Case of Challenge Match Lee Sedol and AlphaGo (알파고와 이세돌의 챌린지 매치에서 분석된 인공지능 시대의 학습자 역량을 위한 토포필리아 융합과학 교육)

  • Yoon, Ma-Byong;Lee, Jong-Hak;Baek, Je-Eun
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.123-131
    • /
    • 2016
  • In this paper, we discussed learner's capability enhancement education suitable for the age of artificial intelligence (AI) using game analysis and archival research based on the 2016 Google Deepmind Challenge match between AI that possessed the finest deep neural networks and the master Baduk player that represented the best of the human minds. AlphaGo was a brilliant move that transcended the conventional wisdom of Baduk and introduced a new paradigm of Baduk. Lee Sedol defeated AlphaGo via the 'divine move and Great idea' that even AlphaGo could not have calculated. This was the triumph of human intuition and insights, which are deeply embedded in human nature as well as human courage and strength. Convergence science education that cultivates student abilities that can help them control machines in the age of AI must be in the direction of developing diverse human insights and positive spirits embedded in human nature not possessed by AI via implementing hearts-on experience and topophilia education obtained from the nature.

Intrusion Detection System Based on Sequential Model in SOME/IP (SOME/IP 에서의 시퀀셜 모델 기반 침입탐지 시스템)

  • Kang, Yeonjae;Pi, Daekwon;Kim, Haerin;Lee, Sangho;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1171-1181
    • /
    • 2022
  • Front Collision-Avoidance Assist (FCA) or Smart Cruise Control (SCC) is installed in a modern vehicle, and the amount of data exchange between ECUs increases rapidly. Therefore, Automotive Ethernet, especially SOME/IP, which supports wide bandwidth and two-way communication, is widely adopted to overcome the bandwidth limitation of traditional CAN communication. SOME/IP is a standard protocol compatible with various automobile operating systems, and improves connectivity between components in the vehicle. However, no encryption or authentication process is defined in the SOME/IP protocol itself. Therefore, there is a need for a security study on the SOME/IP protocol. This paper proposes a deep learning-based intrusion detection system in SOME/IP and performs six attacks to confirm the performance of the intrusion detection system.