• 제목/요약/키워드: Deep heat

검색결과 363건 처리시간 0.182초

고온상태에서 마그네슘 합금의 디프드로잉 성형성에 관한 연구 (A Study on the Formability of Magnesium Alloy in Warm Temperature)

  • 강대민;황종관
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.84-90
    • /
    • 2003
  • Magnesium alloys have been paid attention In automotive and industries as lightweight materials, and with these materials it has been attempted at deep drawing process for assessment of formability of sheet metal. For warm deep drawing process with a local heating and cooling technique, both die and blank holder were heated at warm temperature while the punch was kept at room temperature by cooling water. Warm deep-drawing process with considering heat transfer was simulated by finite element method to investigate the improvement of deep-drawability and temperature distribution of Mg alloy sheet. The effect of sham rate sensitivity index on the deformation profile was considered in this work and the simulation results revealed that considering heat transfer is very effective for deep-drawability of Mg alloy. The deformed blank In considering heat transfer was drawn successfully without any localized thinning and the cup height is higher in contrast to results of simulations in considering no heat transfer.

  • PDF

레이저 심 용입 용저에서 3차원 열유동 해석에 관한 연구 (A Study on the Three-Dimensional Heat Flow Analysis in the Laser Welding for Deep Penetration)

  • 이규태;김재웅
    • Journal of Welding and Joining
    • /
    • 제18권3호
    • /
    • pp.76-82
    • /
    • 2000
  • In this study, three-dimensional heat flow in laser beam welding for deep penetration was analyzed by using F.E.M common code, and then the results were compared with the experimental data. The models for analysis are full penetration welds and are made at three different laser powers (6, 9.9, 4.5 kW) with two different welding speeds (5.8mm/s, 5mm/s). The characteristics of thermal absorption by the workpiece during deep penetration laser welding can be represented by a combination of line heat source through the workpiece and distributed heat source at the top surface due to the plasma plume above the top surface. This gives an insight into the way in which the beam interacts with the material being welded. The analyses performed with the combined heat source models show comparatively good agreement between the experimental and calculated melt temperature isotherm, i.e, the fusion zone boundary. The results are used to explain the "nail head" appearance of fusion zone, which is quite common in laser beam welds.eam welds.

  • PDF

흉요추부의 표재열 및 심부열 적용이 H 반사의 변화에 미치는 영향 (Influence of Superficial Heat and Deep Heat for Lumbo-sacral Segment on H-Reflex)

  • 윤세원;임영은;이정우
    • 대한임상전기생리학회지
    • /
    • 제5권2호
    • /
    • pp.1-9
    • /
    • 2007
  • Purpose: The purpose of this study was to investigate influence of superficial heat and deep heat for lumbo-sacral segment on H-reflex. Methods: Subjects of this research were 12 normal men and women (6 men and 6 women) and they were assigned to superficial heat group (6) and deep heat group (6). Heat treatment was applied between Th12-L2 by placing them at prone posture. superficial heat was applied for 20 min at 30 cm height with infrared lamp. Deep heat was applied for 20 mm at 5 cm height with 100 watt of microwave diathermy. H-reflex used diagnostic electromyography, active electrode was placed at muscle belly of medial gastrocnemius muscle at prone posture and electrical stimulation was given to posterior tibial nerve. Measurement was made before and after experiment and 10 min. and 20 min. after experiment. All data were analyzed with window 12.0 program, comparison of differences among measured items of groups according to repeated measurement was made with repeated measures ANOVA and significance level a was 0.05. Results: M latency at latency analysis showed little changes at two groups. H latency was reduced a little immediately after experiment and recovered to original state, there was significant difference. In analysis of amplitude, Mmax amplitude showed rise a little immediately after.

  • PDF

뜸의 열적효과를 구현하기 위한 심부 열 자극 시스템 개발 (Development of Deep-Heating Stimulation System for Substituting the Heat Effect of Moxibustion)

  • 차지영;명현석;조성필;이경중
    • 전자공학회논문지SC
    • /
    • 제46권6호
    • /
    • pp.50-57
    • /
    • 2009
  • 본 논문에서는 뜸의 열적 효과를 구현할 수 있는 심부 열 자극 시스템을 제작하고 뜸 자극에 의한 온도변화와 유사한 자극 프로토콜을 설계하고 평가하였다. 뜸은 질병에 대한 면역력을 높이고 질병을 치유하는데 사용하지만, 체표면에 화상을 입히는 부작용 및 열 자극의 세기를 조절하기 힘든 한계점이 있다. 이런 한계점을 극복하기 위해 자극의 세기 조절이 용이한 고주파 심부 열 자극 시스템을 개발하고, 심부에 뜸과 동일한 열 자극을 전달할 수 있는 프로토콜을 제안하여 뜸의 심부온도와 비교 하였다. 심부의 온도측정은 고주파의 영향을 받지 않는 적외선 열 센서를 사용해 측정하였고, 적외선 열 카메라 및 thermometer를 이용해 온도를 측정하고 비교하였다. 뜸과 심부 열 자극 시스템을 이용하여 심부에 자극을 인가한 후 측정한 온도변화를 비교한 결과, 표피에 가까울수록 유사한 온도 변화 패턴을 보여준 반면 심부로 내려갈수록 심부 열 자극 시스템의 열적효과가 뜸에 비해 더 효과적인 것을 알 수 있었다. 이를 통해 제작한 심부 열 자극 시스템과 열 자극 프로토콜의 유용성을 확인 할 수 있었다.

Secondary Hyperalgesia to Heat Stimuli Induced by Continuous Deep Pain: A Case Report

  • Park, Jun-Hyong;Kang, Jin-Kyu;Shim, Young-Joo
    • Journal of Oral Medicine and Pain
    • /
    • 제41권4호
    • /
    • pp.195-199
    • /
    • 2016
  • Central sensitization represents a functional change of second order neuron induced by continuous deep pain input and maintained by psychosocial factors. When afferent neurons are involved with central sensitization, secondary hyperalgesia can appear. Secondary hyperalgesia is an increased sensitivity to stimulation without a local cause. Reports on secondary hyperalgesia to heat stimuli are relatively rare compared to mechanical stimuli. And there were few reports of secondary hyperalgesia to heat stimuli in the oral cavity. We presented a case of secondary hyperalgesia to heat stimuli in the gingival area induced by continuous odontogenic pain with a review of the related literature.

Effect of 41℃ deep heat formed by vacuum heating on various pain: Dr.Pakk (Dr. 팍) for pain care

  • Chang, Tae-soun
    • 셀메드
    • /
    • 제12권4호
    • /
    • pp.16.1-16.2
    • /
    • 2022
  • Treatment of patients with pain is directed at relieving pain and restoring function. Heat therapy has been used as a pain treatment. The mean temperatures were 40 and 41℃. Our device, Dr.Pakk heats special silicone to 41℃ with far-infrared rays and attaches it to the painful knee using a vacuum to show the effect. The core technology of the Dr.Pakk is that deep heat is generated when the heat is transmitted deeply by attaching it to the skin. In our experience, Dr.Pakk can be especially effective for knee pain.

Optimization of spent nuclear fuels per canister to improve the disposal efficiency of a deep geological repository in Korea

  • Jeong, Jongtae;Kim, Jung-Woo;Cho, Dong-Keun
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2819-2827
    • /
    • 2022
  • The disposal area of a deep geological repository (DGR) for the disposal of spent nuclear fuels (SNFs) is estimated considering the spacing between deposition holes and between disposal tunnels, as determined by a thermal analysis using the decay heat of a reference SNF. Given the relatively large amount of decay heat of the reference SNF, the disposal area of the DGR is found to be overestimated. Therefore, we develop a computer program using MATLAB, termed ACom (Assembly Combination), to combine SNFs when stored in canisters such that the decay heat per canister is evenly distributed. The stability of ACom was checked and the overall distribution of the decay heat per canister was analyzed. Finally, ACom was applied to disposal scenarios suggested in the conceptual design of a DGR for SNFs, and it was confirmed that the decay heat per canister could be evenly distributed and that the maximum decay heat of the canister could be much lower than that of a canister estimated using a reference SNF. ACom can be used to improve the disposal efficiency by reducing the disposal area of a DGR for SNFs by ensuringg a relatively even distribution of decay heat per canister.

심부지열 용 동축 열교환기 성능예측을 위한 열전달 실험 및 해석 (Heat Transfer Experiment and Analysis to Predict the Efficiency of Heat Exchanger for Deep Geothermal System)

  • 정국진;정윤성;박준수;이동현
    • 융복합기술연구소 논문집
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2017
  • The Heat exchanger for deep geothermal system is very important to enhance the efficiency of the system. The co-axial heat exchanger is used due to the limitation of digging space. The heat transfer on the external surface of outer pipe should be high to receive a large amount of heat from the ground. However, the inner pipe should be insulated to reduce the heat loss and increase the temperature of discharge water. This study made experiment apparatus to describe the co-axial heat exchanger and measure the heat transfer coefficients on the internal and external surface. And the pin-fin was designed and fixed on the internal surface to increase the efficiency of heat exchanger. Finally, we calculated the temperature of discharge water using the heat transfer circuit of co-axial heat exchanger and heat transfer coefficient which from experimental results. The water temperature was reached the ground temperature at -500 m and following the ground temperature. When the water return to the ground surface, the water temperature was decreased due to heat loss. As the pin-fin case, the heat transfer coefficient on the internal surface was decreased by 30% and it mean that the pin-fin help to insulate the inner pipe. However, the discharge water temperature did not change although pin-fin fixed on the inner pipe.

마그네슘 합금 판재의 온간성형 해석에서 FLD를 이용한 성형성 평가 (Formability Test in Warm Forming Simulation of Magnesium Alloy Sheet Using FLD)

  • 이명한;김흥규;김헌영;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, the failure in circular cup deep drawing simulation at warm temperature is predicted using forming limit diagram (FLD). The FLD is used in sheet metal forming analysis to determine the criterion for fracture prediction. The simulation with heat transfer of circular cup deep drawing at warm temperature was conducted. To predict the failure, the simulation with heat transfer used FLD at temperature in the vicinity of maximum thinning. The result of the simulation with heat transfer shows that the drawn depth increases with increasing temperature and is in accord with the experimental results above $150^{\circ}C$. The FLD provides a good guide for the failure prediction of warm forming simulation with heat transfer.

  • PDF

감마선 검층자료를 이용한 국내 대심도 시추공 암반의 열생산율 평가 (Evaluation of Heat Production in Deep Boreholes by Gamma-ray Logging)

  • 조영욱;김명선;이근수;박인화
    • 지구물리와물리탐사
    • /
    • 제24권1호
    • /
    • pp.20-27
    • /
    • 2021
  • 암석의 열생산율은 구성 광물 내 방사성 동위원소의 방사성 붕괴와 감마선 방출에 의한 열에너지에 기인하며, 그 크기는 주요 방사성 동위원소인 U, Th, K의 함량에 지배적이다. 그러므로 암반의 열생산율은 암석의 밀도와 주요 동위원소의 함량에 기반해 평가할 수 있다. 심부 암반의 열생산율 평가에 필요한 방사성 동위원소의 농도는 시추공에서 회수된 암추 또는 암편에 대한 질량분석을 통해 파악할 수 있는데, 대심도 시추공의 경우 요구되는 분석량과 그에 따른 시간 및 비용의 문제로 적용이 제한적일 수 밖에 없다. 시추공을 대상으로 하는 물리검층 중 암반의 감마선 스펙트럼으로부터 U, Th, K의 함량을 유추할 수 있는 기술이 있지만, 열생산율 평가를 위해 별개의 밀도검층 자료를 필요로 하며, 상용화된 장비의 적용 심도 또한 아직은 제한적이다. 이에 대한 대안으로 시추공 암반이 방출하는 감마선의 강도를 측정하는 자연 감마선 검층 결과로부터 열생산율을 유추하는 방법이 제안된 바 있으며, 국내외에서 비교적 쉽게 암반의 열생산율을 평가할 수 있는 방법으로 사용되고 있다. 본 기술보고에서는 국내 상용화된 대심도 시추공 물리검층 장비 및 기술을 활용해 감마선 검층 기반의 열생산율 평가 기법을 개발하고, 국내 약 2 km 깊이의 대심도 시추공에 대한 적용 및 검증 사례를 소개하고자 한다.