• Title/Summary/Keyword: Deep features

Search Result 1,093, Processing Time 0.039 seconds

A Study on the Classification of Surface Defect Based on Deep Convolution Network and Transfer-learning (신경망과 전이학습 기반 표면 결함 분류에 관한 연구)

  • Kim, Sung Joo;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, a method for improving the defect classification performance in low contrast, ununiformity and featureless steel plate surfaces has been studied based on deep convolution neural network and transfer-learning neural network. The steel plate surface images have low contrast, ununiformity, and featureless, so that the contrast between defect and defect-free regions are not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. A classifier based on a deep convolution neural network is constructed to extract features automatically for effective classification of images with these characteristics. As results of the experiment, AlexNet-based transfer-learning classifier showed excellent classification performance of 99.43% with less than 160 seconds of training time. The proposed classification system showed excellent classification performance for low contrast, ununiformity, and featureless surface images.

An Improved Intrusion Detection System for SDN using Multi-Stage Optimized Deep Forest Classifier

  • Saritha Reddy, A;Ramasubba Reddy, B;Suresh Babu, A
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.374-386
    • /
    • 2022
  • Nowadays, research in deep learning leveraged automated computing and networking paradigm evidenced rapid contributions in terms of Software Defined Networking (SDN) and its diverse security applications while handling cybercrimes. SDN plays a vital role in sniffing information related to network usage in large-scale data centers that simultaneously support an improved algorithm design for automated detection of network intrusions. Despite its security protocols, SDN is considered contradictory towards DDoS attacks (Distributed Denial of Service). Several research studies developed machine learning-based network intrusion detection systems addressing detection and mitigation of DDoS attacks in SDN-based networks due to dynamic changes in various features and behavioral patterns. Addressing this problem, this research study focuses on effectively designing a multistage hybrid and intelligent deep learning classifier based on modified deep forest classification to detect DDoS attacks in SDN networks. Experimental results depict that the performance accuracy of the proposed classifier is improved when evaluated with standard parameters.

Research Trends in Steganography Based on Artificial Intelligence (인공지능 기반 스테가노그래피 생성 기술 최신 연구 동향)

  • Hyun Ji Kim;Se Jin Lim;Duk Young Kim;Se Young Yoon;Hwa Jeong Seo
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.9-18
    • /
    • 2023
  • Steganography is a technology capable of protecting data by hiding the existence of data. Recently, with the development of deep learning technology, deep learning-based steganography are being developed. Deep learning can learn by analyzing high-dimensional features of data, so it can improve the performance and quality of steganography. In this paper, we investigated the research trend of image steganography based on deep learning.

Evaluation of Similarity Analysis of Newspaper Article Using Natural Language Processing

  • Ayako Ohshiro;Takeo Okazaki;Takashi Kano;Shinichiro Ueda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.1-7
    • /
    • 2024
  • Comparing text features involves evaluating the "similarity" between texts. It is crucial to use appropriate similarity measures when comparing similarities. This study utilized various techniques to assess the similarities between newspaper articles, including deep learning and a previously proposed method: a combination of Pointwise Mutual Information (PMI) and Word Pair Matching (WPM), denoted as PMI+WPM. For performance comparison, law data from medical research in Japan were utilized as validation data in evaluating the PMI+WPM method. The distribution of similarities in text data varies depending on the evaluation technique and genre, as revealed by the comparative analysis. For newspaper data, non-deep learning methods demonstrated better similarity evaluation accuracy than deep learning methods. Additionally, evaluating similarities in law data is more challenging than in newspaper articles. Despite deep learning being the prevalent method for evaluating textual similarities, this study demonstrates that non-deep learning methods can be effective regarding Japanese-based texts.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

Fault state detection and remaining useful life prediction in AC powered solenoid operated valves based on traditional machine learning and deep neural networks

  • Utah, M.N.;Jung, J.C.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1998-2008
    • /
    • 2020
  • Solenoid operated valves (SOV) play important roles in industrial process to control the flow of fluids. Solenoid valves can be found in so many industries as well as the nuclear plant. The ability to be able to detect the presence of faults and predicting the remaining useful life (RUL) of the SOV is important in maintenance planning and also prevent unexpected interruptions in the flow of process fluids. This paper proposes a fault diagnosis method for the alternating current (AC) powered SOV. Previous research work have been focused on direct current (DC) powered SOV where the current waveform or vibrations are monitored. There are many features hidden in the AC waveform that require further signal analysis. The analysis of the AC powered SOV waveform was done in the time and frequency domain. A total of sixteen features were obtained and these were used to classify the different operating modes of the SOV by applying a machine learning technique for classification. Also, a deep neural network (DNN) was developed for the prediction of RUL based on the failure modes of the SOV. The results of this paper can be used to improve on the condition based monitoring of the SOV.

Classification Method of Plant Leaf using DenseNet (DenseNet을 활용한 식물 잎 분류 방안 연구)

  • Park, Young Min;Gang, Su Myung;Chae, Ji Hun;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.571-582
    • /
    • 2018
  • Recently, development of deep learning has shown better image classification result than human. According to recent research, a hidden layer of deep learning is deeper, and a preservation of extracted features shows good results. However, in the case of general images, the extracted features are clear and easy to sort. This study aims to classify plant leaf images. This plant leaf image has high similarity in each image. Since plant leaf images have high similarity not only between images of different species but also within the same species, classification accuracy is not increased by simply extending the hidden layer or connecting the layers. Therefore, in this paper, we tried to improve the hidden layer of the algorithm called DenseNet which shows the recent excellent classification results, and compare the results of several different modified layers. The proposed method makes it possible to classify plant leaf images collected in a natural environment more easily and accurately than conventional methods. This results in good classification of plant leaf image data including unnecessary noise obtained in a natural environment.

Surgery of Parasplenial Arteriovenous Malformation with Preservation of Vision - A Case Report - (부뇌량팽대 동정맥 기형의 수술에서 시야의 보존 - 증례보고 -)

  • Joo, Jin Yang;Ahn, Jung Yong
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.6
    • /
    • pp.815-821
    • /
    • 2000
  • Parasplenial arteriovenous malformations(AVMs) are rare vascular malformations which have distinct clinical and anatomical features. They are situated at the confluence of the hippocampus, isthmus of the cingulate gyrus and the gyrus occipitotemporalis medialis. These lesions are anterior to the calcarine sulcus and their apex extends towards the medial surface of the trigonum. Posterolaterally, these lesions are in close proximity to the visual cortex and optic radiation. The objectives in the surgery of parasplenial AVMs are complete resection of the lesions and preservation of vision. These objectives must be achieved with comprehensive understanding of the following anatomical features :1) the deep central location of the lesions within eloquent brain tissue ; 2) the lack of cortical representation of the AVMs that requires retraction of visual cortex ; 3) deep arterial supply ; 4) deep venous drainage ; 5) juxtaposition to the choroid plexus with which arterial supply and venous drainage are shared. A 16-year-old female student presented with intraventricular hemorrhage from a right parasplenial-subtrigonal AVM. The lesion, fed by posterior cerebral artery and drained into the vein of Galen, was successfully treated by the inter-hemispheric parietooccipital approach. To avoid visual field defect a small incision was made on precuneus anterior to the calcarine sulcus. In this report, the authors describe a surgical approach with special consideration on preservation of visual field.

  • PDF

Audio Event Classification Using Deep Neural Networks (깊은 신경망을 이용한 오디오 이벤트 분류)

  • Lim, Minkyu;Lee, Donghyun;Kim, Kwang-Ho;Kim, Ji-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • This paper proposes an audio event classification method using Deep Neural Networks (DNN). The proposed method applies Feed Forward Neural Network (FFNN) to generate event probabilities of ten audio events (dog barks, engine idling, and so on) for each frame. For each frame, mel scale filter bank features of its consecutive frames are used as the input vector of the FFNN. These event probabilities are accumulated for the events and the classification result is determined as the event with the highest accumulated probability. For the same dataset, the best accuracy of previous studies was reported as about 70% when the Support Vector Machine (SVM) was applied. The best accuracy of the proposed method achieves as 79.23% for the UrbanSound8K dataset when 80 mel scale filter bank features each from 7 consecutive frames (in total 560) were implemented as the input vector for the FFNN with two hidden layers and 2,000 neurons per hidden layer. In this configuration, the rectified linear unit was suggested as its activation function.

Face Recognition Based on the Combination of Enhanced Local Texture Feature and DBN under Complex Illumination Conditions

  • Li, Chen;Zhao, Shuai;Xiao, Ke;Wang, Yanjie
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.191-204
    • /
    • 2018
  • To combat the adverse impact imposed by illumination variation in the face recognition process, an effective and feasible algorithm is proposed in this paper. Firstly, an enhanced local texture feature is presented by applying the central symmetric encode principle on the fused component images acquired from the wavelet decomposition. Then the proposed local texture features are combined with Deep Belief Network (DBN) to gain robust deep features of face images under severe illumination conditions. Abundant experiments with different test schemes are conducted on both CMU-PIE and Extended Yale-B databases which contain face images under various illumination condition. Compared with the DBN, LBP combined with DBN and CSLBP combined with DBN, our proposed method achieves the most satisfying recognition rate regardless of the database used, the test scheme adopted or the illumination condition encountered, especially for the face recognition under severe illumination variation.