• Title/Summary/Keyword: Deep circulation

Search Result 146, Processing Time 0.024 seconds

Abyssal Circulation Driven by a Periodic Impulsive Source in a Small Basin with Steep Bottom Slope with Implications to the East Sea

  • Seung, Young-Ho
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.287-296
    • /
    • 2012
  • In the theory of source-driven abyssal circulation, the forcing is usually assumed to be steady source (deep-water formation). In many cases, however, the deep-water formation occurs instantaneously and it is not clear whether the theory can be applied well in this case. An attempt is made to resolve this problem by using a simple reduced gravity model. The model basin has large depth change compared for its size, like the East Sea, such that isobaths nearly coincide with geostrophic contours. Deep-water is formed every year impulsively and flows into the model basin through the boundary. It is found that the circulation driven by the impulsive source is generally the same as that driven by a steady source except that the former has a seasonal fluctuation associated with unsteadiness of forcing. The magnitudes of both the annual average and seasonal fluctuations increase with the rate of deep-water formation. The problem can be approximated to that of linear diffusion of momentum with boundary flux, which well demonstrates the essential feature of abyssal circulation spun-up by periodic impulsive source. Although the model greatly idealizes the real situation, it suggests that abyssal circulation can be driven by a periodic impulsive source in the East Sea.

Design Methods of Intermittent Deep Draw Aeration System for Reservoir Water Quality Management (저수지의 수질 관리를 위한 간헐식 양수통형 인공 순환 장치의 설계 방법 개발)

  • Seo, Dongil;Song, Museok;Hwang, Hyundong;Lee, Eun-hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.445-452
    • /
    • 2004
  • Intermittent deep draw artificial circulation system is one of the most widely used destratification systems to control algal bloom in reservoirs in Korea. However, there have been neither theoretical background of design criteria nor operation guide line for efficient application of the system available for such systems. A design method was developed to calculate required compressor capacity and number of circulation units considering physical interactions between stratified water layers and plumes induced by the intermittent deep draw artificial circulation system. The program was tested with data observed in Yeoncho Lake. The results indicated that the developed method can applied in the fields successfully. Further validation processes would improve design and operation methods.

A Conceptual Two-Layer Model of Thermohaline Circulation in a Pie-Shaped $\beta$-Plane Basin

  • Park, Young-Gyu
    • Journal of the korean society of oceanography
    • /
    • v.38 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • The three dimensional structure of thermohaline circulation in a D-plane is investigated using a conceptual two layer model and a scaling argument. In this simple model, the water mass formation region is excluded. The upper layer represents the oceans above the main thermocline. The lower layer represents the deep ocean below the thermocline and is much thicker than the upper layer. In each layer, geostrophy and the linear vorticity balance are assumed. The cross interfacial velocity that compensates for the deep water mass formation balances downward heat diffusion from the top. From the above relations, we can determine the thickness of the upper layer, which is the same as thermocline depth. The results we get is basically the same as that we get for an f-plane ocean or the classical thermocline theory. Mass budget using the velocity scales from the scaling argument shows that western boundary and interior transports are much larger than the net meridional transport. Therefore in the thermohaline circulation, horizontal circulation is much stronger than the vertical circulation occuring on a meridional plane.

A Review of Ocean Circulation of the East/Japan Sea (한국 동해 해수순환의 개략적 고찰)

  • 김종규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.103-107
    • /
    • 2001
  • The major studies of an ocean circulation of the East/Japan Sea related to evaluate the feasibility and utilization of deep ocean water are reviewed. The major feature of surface current system of the East/Japan Sea is an inflow of the Tsushima Warm Current through the Korea/Tsushima Strait and the outflow through the Tsugaru and Soya Straits. The Tsushima Warm Current has been known to split into two or three branches in the southern region of the East/Japan Sea. In the cold water region of the East/Japan Sea, the North Korean Cold Current turns to the east near 39$^{\circ}$N after meeting the East Korean Warm Current, then flows eastward. The degree of penetration depends on the strength of the positive wind stress curl, according to the ventilation theory. Various current meter moorings indicate strong and oscillatory deep currents in various parts of the basin. According to some numerical experiments, these currents may be induced by pressure-topography or eddy-topography interaction. However, more investigations are needed to explain clearly the presence of these strong bottom currents. This study concludes the importance of topographical coupling, isopycnal outcropping, different wind forcing and the branching of the Tsushima Warm Current on the circulation of the East/Japan Sea.

  • PDF

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.

Implication of the Change in Overturning Circulation to the LGM CO2 Budget

  • Kim, Seong-Joong;Lee, Bang-Yong;Yoon, Ho-Il;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.501-506
    • /
    • 2004
  • The observational proxy estimates suggest that the North Atlantic overturning stream function associated with the North Atlantic Deep Water (NADW) production and outflow was substantially weaker during the last glacial maximum (LGM) than that observed under present conditions. The impact of the changes in overturning circulation on the glacial carbon budget is investigated using a box model. The carbon box model reveals that the atmospheric $CO_2$ concentration is more sensitive to change in the overturning circulation of the North Atlantic than that of the Southern Ocean, especially when North Atlantic overturning becomes weaker. For example, when the strength of the North Atlantic overturning circulation is halved, the atmospheric $CO_2$ concentration is reduced by 50ppm of that associated with the accumulation of $CO_2$ in the deep ocean. This result implies that a weaker North Atlantic overturning circulation may play an important role in the lowering of LGM atmospheric $CO_2$ concentration.

An Analytical Study on the Circulation of the Small-scale Elderly Care Facilities in JeollaNamdo and Gwangju -Focusing on the Analysis on Spatial Depth and Visible Area- (전라남도.광주광역시 소규모요양시설의 동선분석연구 -공간깊이와 가시영역분석을 중심으로-)

  • Kim, Jeong-Mi;Cho, Ju-Young;Lee, Hyo-Won
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.15 no.1
    • /
    • pp.23-32
    • /
    • 2009
  • Among welfare facilities for the elderly, necessity for the elderly welfare with diverse advantages is rising in the Small-scale Elderly Care Facilities. The government is expecting great demand in the future. However, current the Facilities lack construction plans that consider characteristics of the elderly. Accordingly, 14 case facilities located in JeollaNamdo and Gwangju were selected to comprehensively analyze the circulation of seniors at care facilities by computing spatial depth and visible area variables. As a result of this study, average spatial depth of bathroom, resting room, physical therapy room and dining hall that seniors frequently get in contact with was found to be deep, but visible area appropriate for the function of space was not available. It showed that the circulation for the elderly was deep spatially and long physically, and the spatial rank along circulation which is perceived visually by the admitted the elderly was clear, thus, providing them abundant visual experience supported by high openness as they move from private space to public space. The obtained visibility, however, was observed not to be matched with the function of each space. Since the Small-scale Elderly Care Facilities require various spaces within small surface area, actual functions of each space must be taken into consideration with hierarchical space organization to obtain an environment that stimulates senses such as vision and hearing. In addition, since the circulation of seniors using facilities must consider aging characteristics and delicate care on spatial depth and physical distances, in-depth studies on planning of the circulation in care facilities are deemed necessary.

  • PDF

A Study on Performance Evaluation of a Vertically Closed Deep Geothermal Circulation Simulator (수직 밀폐형 심부지열 순환 시뮬레이터의 성능 평가에 관한 연구)

  • Bae, Jung-Hyeong;Lee, Dong-Woon;Yoon, Chung-Man;Ryoo, Yeon-Su;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.8-17
    • /
    • 2016
  • While greenhouses have been utilized as a sustainable alternative to traditional soil farming, they are often powered by diesel boilers that necessitate vast amounts of non-renewable energy and emit toxic fumes. Thus, geothermal heat pumps have been proposed as a more energy-efficient substitution for diesel boilers. Currently, most horticultural facilities in the United States use shallow geothermal systems, and are often equipped with horizontal underground heat exchangers as well as heat pump equipment. These shallow geothermal systems require a large drilling site and heat pump to function, which results in high maintenance costs. The heat pump itself consumes a large amount of power, which degrades system performance. Conversely, high temperatures can be attained within a single borehole in deep geothermal vertical closing systems without using a heat pump. This setup can dramatically reduce the power consumption and improve system performance. In this study, we have modeled a circulation simulator after the circulation systems in deep geothermal facilities to analyze a 2000-meter borehole in Naju-Sanpo-myeon. The simulator is operated by manipulating various putative parameters affecting system performance to analyze the system's coefficient of performance.

An Analysis of Students' Conceptions on Blood Circulation as Components: A Cross-sectional Study (혈액 순환 요소별 학생들의 개념 분석 : 횡단적 연구)

  • Kim, Mi-Young;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.6
    • /
    • pp.753-764
    • /
    • 2006
  • The concept of blood circulation is so complex, dynamic and abstract that students have difficulty in understanding it and students' preconceptions hardly change into scientific concepts even after the lessons. The purpose of this study is to examine middle school, high school, and undergraduate students' understanding of blood circulation and to find the reason why the lack of deep understanding is displayed in students' explanations for the blood circulation. The study consists of three parts. First, the test was designed to investigate students' ideas for blood circulation as components of the structure, the function, the behavior and the mechanism. Second, the test was applied to 7th, 10th and 13th graders to investigate the students' understanding of blood circulation and categorize the types of students' blood circulation model according to their academic level. Finally, the concepts the students had little understanding of were analyzed to decide which ontological category they fell into and further to inquire the characteristics of each concept. The results showed that many students comprehend the structure and the function of blood circulation components well, and there was no significant difference in students' understanding according to the academic level. In contrast, understanding the behavior and the mechanism of circulatory components has remarkably improved in high school students and undergraduates majoring in science and engineering. Also, students' blood circulation models were classified into seven different types. High school students and undergraduates majoring in science and engineering demonstrated a significantly higher percentage on the type of double-loop-branch compared to other academic levels. In addition, it was found that the lack of deep understanding was caused by students' misconceiving the 'equilibrium' category as 'event' category.

Preliminary Comparison of Deep-sea Sedimentation in the Ulleung and Shikoku Basins: Deep-sea Circulations and Bottom Current (울릉분지와 시코쿠분지 심해퇴적작용의 비교에 관한 기초연구: 심층수순환과 저층류)

  • Chun, Seung-Soo;Lee, In-Tae
    • Journal of the Korean earth science society
    • /
    • v.23 no.3
    • /
    • pp.259-269
    • /
    • 2002
  • Based on sedimentary structures, degree of bioturbation, and internal erosional layers, the deep-sea core sediments in the East Sea (Ulleung and Yamato basins) and the Northwestern Pacific Ocean (Shikoku Basin) can be divided into two parts (upper and lower) with the boundary of around 10,000 years B.P. in age. The upper part of core KT94-10 from Shikoku Basin is characterized by low sedimentation rate, internal erosion layer, high degree of bioturbation and cross-lamination structures. It can be interpreted as the bottom-current deposits which show some different characteristics from turbidite or hemipelagic sediment. However, its lower part consists of highly bioturbated, massive mud, suggesting that it be not related to the influence of bottom current. On the other hand, the cores in Ulleung and Yamato basins do not show any evidence of bottom-current deposits: their upper parts consist of bioturbated mud, and lower parts are characterized by laminated mud with pyrite filaments, indicating anaerobic condition. Consequently, these sedimentological characteristics suggest that deep-sea circulation would be changed from slow-moving to fast-moving one at this bounding time commonly in the Northwestern Pacific Ocean and the East Sea. Also, even in the same time, the deep-sea circulation in the Northwestern Pacific area would be relatively faster than that in the East Sea.