• Title/Summary/Keyword: Deep Soil

Search Result 700, Processing Time 0.027 seconds

An analytical solution for soil-lining interaction in a deep and circular tunnel (원형터널에서 지반-라이닝 상호작용에 대한 수학적 해석해에 관한 연구)

  • Lee, Seong-Won;Jeong, Jea-Hyeung;Kim, Chang-Yong;Bae, Gyu-Jin;Lee, Joo-Gong;Park, Kyung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.427-435
    • /
    • 2009
  • This study deals with the analytical solution for soil-lining interaction in a deep and circular tunnel. Simple closed-form analytical solutions for thrust and moment in the circular tunnel lining due to static and seismic loadings are developed by considering the relations between displacement and interaction forces at the soil-lining interface. The interaction effect at the soil-lining interface is considered with new ratios (the normal and shear stiffness ratios). The effects of the ratios on the normalized thrust and the normalized moment are investigated.

Impact of soft and stiff soil interlayers on the pile group dynamic response under lateral harmonic load

  • Masoud Oulapour;Sam Esfandiari;Mohammad M. Olapour
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.583-596
    • /
    • 2023
  • The interlayers, either softer or stiffer than the surrounding layers, are usually overlooked during field investigation due to the small thickness. They may be neglected through the analysis process for simplicity. However, they may significantly affect the dynamic behavior of the soil-foundation system. In this study, a series of 3D finite-element Direct-solution steady-state harmonic analyses were carried out using ABAQUS/CAE software to investigate the impacts of interlayers on the dynamic response of a cast in place pile group subjected to horizontal harmonic load. The experimental data of a 3×2 pile group testing was used to verify the numerical modeling. The effects of thickness, depth, and shear modulus of the interlayers on the dynamic response of the pile group are investigated. The simulations were conducted on both stiff and soft soils. It was found that the soft interlayers affect the frequency-amplitude curve of the system only in frequencies higher than 70% of the resonant frequency of the base soil. While, the effect of stiff interlayer in soft base soil started at frequency of 35% of the resonant frequency of the base soil. Also, it was observed that a shallow stiff interlayer increased the resonant amplitude by 11%, while a deep one only increased the resonant frequency by 7%. Moreover, a shallow soft interlayer increased the resonant frequency by 20% in soft base soils, whereas, it had an effect as low as 6% on resonant amplitude. Also, the results showed that deep soft interlayers increased the resonant amplitude by 17 to 20% in both soft and stiff base soils due to a reduction in lateral support of the piles. In the cases of deep thick, soft interlayers, the resonant frequency reduced significantly, i.e., 16 to 20%. It was found that the stiff interlayers were most effective on the amplitude and frequency of the pile group.

Physical Modeling of Soil-Structure Systems Response to Earthquake Loading

  • Abdoun, Tarek;Gonzalez, Lenart
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.43-51
    • /
    • 2007
  • Liquefaction-induced lateral spreading continues to be a major cause of damage to deep foundations. Currently there is a huge uncertainty associated with the maximum lateral pressures and forces applied by the liquefied soil to deep foundations. Furthermore, recent centrifuge and is shaking table tests of pile foundations indicate that the permeability of the liquefied sand is an extremely important and poorly understood factor. This article presents experimental results and analysis of one of the centrifuge tests that were conducted at the 150 g-ton RPI centrifuge to investigate the effect of soil permeability in the response of single piles and pile groups to lateral spreading.

Seepage Behavior with Unsaturated Soil-Water Characteristic in Reclaimed Deep Excavation Area (해안매립지 대심도 굴착지역의 불포화 함수특성에 따른 침투류 거동)

  • Shin, Bang-Woong;Lee, Heung-Gil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.47-58
    • /
    • 2005
  • Development of underground space is conducted for various useful facility and underground structures and deep excavation technology for reclaimed area has been researched and developed. The seepage flow and behavior of phreatic line in reclaimed area was predominated by transient flow caused by tidal action. Also the soil-water characteristic relation is most important factor for transient flow analysis, therefore the research about the soil-water characteristic is strongly required. In this paper, laboratory tests (pressure cell, desiccator, and tensiometer test) and theoretical analysis were performed to investigate the soil-water characteristic such as air-entry value, metric suction, and residual water content. And the feasibility of prediction method for soil-water characteristic are presented by transient seepage analysis and comparison between analysis results and in-situ measured seepage flux in LNG TK-00 storage tank. Based on the result of laboratory and theoretical analysis, Fredlund and Xing's method provide to work out well for reclaimed ground soils. Also, the transient analysis result is more reasonable and effective for design of deep excavation work in coastal and reclaimed ground.

  • PDF

Sprouting and Emergence Properties of Eleocharis kuroguwai Ohwi (올방개 괴경(塊莖)의 맹아(萌芽) 및 출현(出現) 특성(特性))

  • Lee, H.K.;Lee, I.Y.;Ryu, G.H.;Lee, J.O.;Lee, E.J.
    • Korean Journal of Weed Science
    • /
    • v.14 no.4
    • /
    • pp.233-238
    • /
    • 1994
  • The experiment on sprouting and emergence properties of Eleocharis kuroguwai was conducted at laboratory and greenhouse conditions in 1993. Most of tubers had the apical dominance of buds at sprouting and had the competitive relationship for mesocotyl elongation. When pyrazosulfuron was applied on soil surface, all of apical buds were killed, but the first and second lateral buds survived to 50% and 90%, respectively, and the third lateral buds were almost at presprouted state. The tubers at 10-15cm deep soil emerged 1 week late and 35% low in emergence rate compared with the tubers at 2-5cm deep. As the plants emerged from the deep soil, the mesocotyl and the roots were distributed at deep soil more or less. Among the tubers buried at 10cm and 15cm deep soil, 25% and 30% respectively were not emergerd due to the suspension of mesocotyl elongation. Although the roots and shoots were removed from the tubers at the stage of 20cm high, all of mother tubers emerged again even 2 weeks late.

  • PDF

Study of Naturally Occurring Radioactive Material Present in Deep Soil of the Malwa Region of Punjab State of India Using Low Level Background Gamma-Ray Spectrometry

  • Srivastava, Alok;Chahar, Vikash;Chauhan, Neeraj;Krupp, Dominik;Scherer, Ulrich W.
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.16-21
    • /
    • 2022
  • Background: Epidemiological observations such as mental retardation, physical deformities, etc., in children besides different types of cancer in the adult population of the Malwa region have been reported. The present study is designed to get insight into the role of naturally occurring radioactive material (NORM) in causing detrimental health effects observed in the general population of this region. Materials and Methods: Deep soil samples were collected from different locations in the Malwa region. Their activity concentrations were determined using low-level background gammaray spectrometry. High efficiency and high purity germanium detector capped in a lead-shielded chamber having a resolution of 1.8 keV at 1,173 keV and 2.0 keV at the 1,332 keV line of 60Co was used in the present work. Data were evaluated with Genie-2000 software. Results and Discussion: Mean activity concentrations of 238U, 232Th, and 40K in deep soil were found to be 101.3 Bq/kg, 65.8 Bq/kg, and 688.6 Bq/kg, respectively. The mean activity concentration of 238U was found to be three and half times higher than the global average prescribed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). It was further observed that the activity concentration of 232Th and 40K has a magnitude that is nearly one and half times higher than the global average prescribed by UNSCEAR. In addition, the radioisotope 137Cs which is likely to have its origin in radiation fallout was also observed. It is postulated that the NORM present in high quantity in deep soil somehow get mobilized into the water aquifers used by the general population and thereby causing harmful health problems. Conclusion: It can be stated that the present work has been able to demonstrate the use of low background gamma-ray spectrometry to understand the role of NORM in causing health-related effects in a general population of the Malwa region of Punjab, India.

Relationships between Soil Factors and Growth of Annual Ring in Pinus densiflora on Stony Mountain (바위산의 토양요인과 소나무의 연륜생장 사이의 관계)

  • Lee, Chang Seok;Joon Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.10 no.3
    • /
    • pp.151-159
    • /
    • 1987
  • Relationships between soil factors and the growth of annual ring of Pinus densiflora grown on stony mountain were investigated at two sites of the different parent rocks: the one was formed by granite at Mt. Gwanag, Seoul and the other feldspar porphyry at Mt. Bipa, Daegu. The growth of annual ring was influenced by the physical factors of soil, such as soil depth, field caacity and water content of soil, rather than by the KDICical factors, such as total nitrogen, potassium, and calcium of soil. Of the soil factors affecting the growth of annual ring, soil depth, field capacity, water content of soil and organic matter closely interrelated with each other. All of these factors influenced water content of soil which might affect the water potential of Pinus densiflora leaves. In fact, the leaf water potential, affecting as the main factor for the growth of annual ring, of the pine grown in a deep soil was higher than that of the pine in a shallow soil.

  • PDF

Applicability Study on Deep Mixing for Urban Construction (심층혼합처리 공법의 도심지 공사 적용성 연구)

  • Kim, Young-Seok;Choo, Jin-Hyun;Cho, Yong-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.500-506
    • /
    • 2011
  • The deep mixing method, which is generally considered as a method for improving soft ground, is assessed in terms of its applicability for urban construction. Using small equipment tailored to perform deep mixing in congested urban areas, deep mixing was performed to reinforce the foundation ground of a retaining wall in a redevelopment site in Seoul. Strengths characteristics, construction vibrations and displacements induced to an adjacent old masonry wall were evaluated by laboratory tests and field monitoring. The results indicate that the strength of ground was improved appropriately whilst the vibrations and displacements induced by deep mixing were slight enough to satisfy the general requirements for construction works in urban environments. Therefore, it is concluded that deep mixing method can be a practical option for foundation methods in urban construction works where minimizing noise and vibrations is an important concern.

Predictive System for Unconfined Compressive Strength of Lightweight Treated Soil(LTS) using Deep Learning (딥러닝을 이용한 경량혼합토의 일축압축강도 예측 시스템)

  • Park, Bohyun;Kim, Dookie;Park, Dae-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.18-25
    • /
    • 2020
  • The unconfined compressive strength of lightweight treated soils strongly depends on mixing ratio. To characterize the relation between various LTS components and the unconfined compressive strength of LTS, extensive studies have been conducted, proposing normalized factor using regression models based on their experimental results. However, these results obtained from laboratory experiments do not expect consistent prediction accuracy due to complicated relation between materials and mix proportions. In this study, deep neural network model(Deep-LTS), which was based on experimental test results performed on various mixing conditions, was applied to predict the unconfined compressive strength. It was found that the unconfined compressive strength LTS at a given mixing ratio could be resonable estimated using proposed Deep-LTS.

Infiltration and Water Redistribution in Sandy Soil: Analysis Using Deep Learning-Based Soil Moisture Prediction (딥러닝 기반 함수비 예측을 이용한 사질토 지반 침투 및 수분 재분포 분석)

  • Eun Soo Jeong;Tae Ho Bong;Jung Il Seo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.490-501
    • /
    • 2023
  • Laboratory column tests were conducted to analyze infiltration and water redistribution processes on the basis of rainfall. To efficiently measure moisture content within soil layers, this research developed a predictive model grounded in a convolutional neural network (CNN), a deep learning technique. The digital images obtained during the column tests were incorporated into the established CNN. The moisture content of each soil layer over time was effectively measured. The measured values were also in relatively good agreement with the moisture content determined using the moisture sensors installed for each soil layer. The use of CNN enabled a comprehensive understanding of continuous moisture distribution within the soil layers, as well as the infiltration process according to soil texture and initial moisture content conditions.