• Title/Summary/Keyword: Deep Neural Network)

Search Result 2,114, Processing Time 0.03 seconds

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

(Searching Effective Network Parameters to Construct Convolutional Neural Networks for Object Detection) (물체 검출 컨벌루션 신경망 설계를 위한 효과적인 네트워크 파라미터 추출)

  • Kim, Nuri;Lee, Donghoon;Oh, Songhwai
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.668-673
    • /
    • 2017
  • Deep neural networks have shown remarkable performance in various fields of pattern recognition such as voice recognition, image recognition and object detection. However, underlying mechanisms of the network have not been fully revealed. In this paper, we focused on empirical analysis of the network parameters. The Faster R-CNN(region-based convolutional neural network) was used as a baseline network of our work and three important parameters were analyzed: the dropout ratio which prevents the overfitting of the neural network, the size of the anchor boxes and the activation function. We also compared the performance of dropout and batch normalization. The network performed favorably when the dropout ratio was 0.3 and the size of the anchor box had not shown notable relation to the performance of the network. The result showed that batch normalization can't entirely substitute the dropout method. The used leaky ReLU(rectified linear unit) with a negative domain slope of 0.02 showed comparably good performance.

A StyleGAN Image Detection Model Based on Convolutional Neural Network (합성곱신경망 기반의 StyleGAN 이미지 탐지모델)

  • Kim, Jiyeon;Hong, Seung-Ah;Kim, Hamin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1447-1456
    • /
    • 2019
  • As artificial intelligence technology is actively used in image processing, it is possible to generate high-quality fake images based on deep learning. Fake images generated using GAN(Generative Adversarial Network), one of unsupervised learning algorithms, have reached levels that are hard to discriminate from the naked eye. Detecting these fake images is required as they can be abused for crimes such as illegal content production, identity fraud and defamation. In this paper, we develop a deep-learning model based on CNN(Convolutional Neural Network) for the detection of StyleGAN fake images. StyleGAN is one of GAN algorithms and has an excellent performance in generating face images. We experiment with 48 number of experimental scenarios developed by combining parameters of the proposed model. We train and test each scenario with 300,000 number of real and fake face images in order to present a model parameter that improves performance in the detection of fake faces.

Binary Classification of Hypertensive Retinopathy Using Deep Dense CNN Learning

  • Mostafa E.A., Ibrahim;Qaisar, Abbas
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.98-106
    • /
    • 2022
  • A condition of the retina known as hypertensive retinopathy (HR) is connected to high blood pressure. The severity and persistence of hypertension are directly correlated with the incidence of HR. To avoid blindness, it is essential to recognize and assess HR as soon as possible. Few computer-aided systems are currently available that can diagnose HR issues. On the other hand, those systems focused on gathering characteristics from a variety of retinopathy-related HR lesions and categorizing them using conventional machine-learning algorithms. Consequently, for limited applications, significant and complicated image processing methods are necessary. As seen in recent similar systems, the preciseness of classification is likewise lacking. To address these issues, a new CAD HR-diagnosis system employing the advanced Deep Dense CNN Learning (DD-CNN) technology is being developed to early identify HR. The HR-diagnosis system utilized a convolutional neural network that was previously trained as a feature extractor. The statistical investigation of more than 1400 retinography images is undertaken to assess the accuracy of the implemented system using several performance metrics such as specificity (SP), sensitivity (SE), area under the receiver operating curve (AUC), and accuracy (ACC). On average, we achieved a SE of 97%, ACC of 98%, SP of 99%, and AUC of 0.98. These results indicate that the proposed DD-CNN classifier is used to diagnose hypertensive retinopathy.

Performance comparison of various deep neural network architectures using Merlin toolkit for a Korean TTS system (Merlin 툴킷을 이용한 한국어 TTS 시스템의 심층 신경망 구조 성능 비교)

  • Hong, Junyoung;Kwon, Chulhong
    • Phonetics and Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.57-64
    • /
    • 2019
  • In this paper, we construct a Korean text-to-speech system using the Merlin toolkit which is an open source system for speech synthesis. In the text-to-speech system, the HMM-based statistical parametric speech synthesis method is widely used, but it is known that the quality of synthesized speech is degraded due to limitations of the acoustic modeling scheme that includes context factors. In this paper, we propose an acoustic modeling architecture that uses deep neural network technique, which shows excellent performance in various fields. Fully connected deep feedforward neural network (DNN), recurrent neural network (RNN), gated recurrent unit (GRU), long short-term memory (LSTM), bidirectional LSTM (BLSTM) are included in the architecture. Experimental results have shown that the performance is improved by including sequence modeling in the architecture, and the architecture with LSTM or BLSTM shows the best performance. It has been also found that inclusion of delta and delta-delta components in the acoustic feature parameters is advantageous for performance improvement.

Deep Learning-based Prediction of PM10 Fluctuation from Gwanak-gu Urban Area, Seoul, Korea (서울 관악구 도심지역 미세먼지(PM10) 관측 값을 활용한 딥러닝 기반의 농도변동 예측)

  • Choi, Han-Soo;Kang, Myungjoo;Kim, Yong Cheol;Choi, Hanna
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.74-83
    • /
    • 2020
  • Since fine dust (PM10) has a significant influence on soil and groundwater composition during dry and wet deposition processes, it is of a vital importance to understand the fate and transport of aerosol in geological environments. Fine dust is formed after the chemical reaction of several precursors, typically observed in short intervals within a few hours. In this study, deep learning approach was applied to predict the fate of fine dust in an urban area. Deep learning training was performed by combining convolutional neural network (CNN) and recurrent neural network (RNN) techniques. The PM10 concentration after 1 hour was predicted based on three-hour data by setting SO2, CO, O3, NO2, and PM10 as training data. The obtained coefficient of determination value, R2, was 0.8973 between predicted and measured values for the entire concentration range of PM10, suggesting deep learning method can be developed into a reliable and viable tool for prediction of fine dust concentration.

Parking Lot Vehicle Counting Using a Deep Convolutional Neural Network (Deep Convolutional Neural Network를 이용한 주차장 차량 계수 시스템)

  • Lim, Kuoy Suong;Kwon, Jang woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.173-187
    • /
    • 2018
  • This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot management system. We applied the You Only Look Once version 2 (YOLOv2) detector and come up with a deep convolutional neural network (CNN) based on YOLOv2 with a different architecture and two models. The effectiveness of the proposed architecture is illustrated using a publicly available Udacity's self-driving-car datasets. After training and testing, our proposed architecture with new models is able to obtain 64.30% mean average precision which is a better performance compare to the original architecture (YOLOv2) that achieved only 47.89% mean average precision on the detection of car, truck, and pedestrian.

Evaluation of Rainfall Erosivity Factor Estimation Using Machine and Deep Learning Models (머신러닝 및 딥러닝을 활용한 강우침식능인자 예측 평가)

  • Lee, Jimin;Lee, Seoro;Lee, Gwanjae;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.450-450
    • /
    • 2021
  • 기후변화 보고서에 따르면 집중 호우의 강도 및 빈도 증가가 향후 몇 년동안 지속될 것이라 제시하였다. 이러한 집중호우가 빈번히 발생하게 된다면 강우 침식성이 증가하여 표토 침식에 더 취약하게 발생된다. Universal Soil Loss Equation (USLE) 입력 매개 변수 중 하나인 강우침식능인자는 토양 유실을 예측할때 강우 강도의 미치는 영향을 제시하는 인자이다. 선행 연구에서 USLE 방법을 사용하여 강우침식능인자를 산정하였지만, 60분 단위 강우자료를 이용하였기 때문에 정확한 30분 최대 강우강도 산정을 고려하지 못하는 한계점이 있다. 본 연구의 목적은 강우침식능인자를 이전의 진행된 방법보다 더 빠르고 정확하게 예측하는 머신러닝 모델을 개발하며, 총 월별 강우량, 최대 일 강우량 및 최대 시간별 강우량 데이터만 있어도 산정이 가능하도록 하였다. 이를 위해 본 연구에서는 강우침식능인자의 산정 값의 정확도를 높이기 위해 1분 간격 강우 데이터를 사용하며, 최근 강우 패턴을 반영하기 위해서 2013-2019년 자료로 이용했다. 우선, 월별 특성을 파악하기 위해 USLE 계산 방법을 사용하여 월별 강우침식능인자를 산정하였고, 국내 50개 지점을 대상으로 계산된 월별 강우침식능인자를 실측 값으로 정하여, 머신러닝 모델을 통하여 강우침식능인자 예측하도록 학습시켜 분석하였다. 이 연구에 사용된 머신러닝 모델들은 Decision Tree, Random Forest, K-Nearest Neighbors, Gradient Boosting, eXtreme Gradient Boost 및 Deep Neural Network을 이용하였다. 또한, 교차 검증을 통해서 모델 중 Deep Neural Network이 강우침식능인자 예측 정확도가 가장 높게 산정하였다. Deep Neural Network은 Nash-Sutcliffe Efficiency (NSE) 와 Coefficient of determination (R2)의 결과값이 0.87로서 모델의 예측성을 입증하였으며, 검증 모델을 테스트 하기 위해 국내 6개 지점을 무작위로 선별하여 강우침식능인자를 분석하였다. 본 연구 결과에서 나온 Deep Neural Network을 이용하면, 훨씬 적은 노력과 시간으로 원하는 지점에서 월별 강우침식능인자를 예측할 수 있으며, 한국 강우 패턴을 효율적으로 분석 할 수 있을 것이라 판단된다. 이를 통해 향후 토양 침식 위험을 지표화하는 것뿐만 아니라 토양 보전 계획을 수립할 수 있으며, 위험 지역을 우선적으로 선별하고 제시하는데 유용하게 사용 될 것이라 사료된다.

  • PDF

Proposal of a Prediction Framework Based on Deep Learning Algorithm to Predict Safety Accidents at Small-scale Construction Sites (소규모 건설현장의 안전사고 예측을 위한 딥러닝 알고리즘 기반의 예측프레임워크 제안)

  • Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.831-839
    • /
    • 2023
  • This study aims to develop a framework for an accident prediction model leveraging a deep neural network algorithm, specifically tailored for small-scale construction sites. Notably, the incidence of accidents in the construction sector is markedly higher compared to other industries, with a significant contribution from small-scale sites. The challenging nature of construction in urban settings, coupled with the increasing frequency of adverse weather conditions, is likely to escalate accident risks at these sites. Anticipating and mitigating accidents at small-scale construction sites is therefore crucial to decrease the overall industry accident rate. Consequently, this research introduces a Deep Neural Network-based model for forecasting accidents at small-scale construction sites. The framework and findings of this study are poised to serve as a guideline for the safety management of small-scale construction projects, ultimately aiding in the realization of safer, more sustainable construction practices at these sites.

Study of Efficient Network Structure for Real-time Image Super-Resolution (실시간 영상 초해상도 복원을 위한 효율적인 신경망 구조 연구)

  • Jeong, Woojin;Han, Bok Gyu;Lee, Dong Seok;Choi, Byung In;Moon, Young Shik
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2018
  • A single-image super-resolution is a process of restoring a high-resolution image from a low-resolution image. Recently, the super-resolution using the deep neural network has shown good results. In this paper, we propose a neural network structure that improves speed and performance over conventional neural network based super-resolution methods. To do this, we analyze the conventional neural network based super-resolution methods and propose solutions. The proposed method reduce the 5 stages of the conventional method to 3 stages. Then we have studied the optimal width and depth by experimenting on the width and depth of the network. Experimental results have shown that the proposed method improves the disadvantages of the conventional methods. The proposed neural network structure showed superior performance and speed than the conventional method.